These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3955014)

  • 1. Fluorescence studies on a membrane-embedded peptide from the carboxy terminus of lipophilin.
    Kahan I; Epand RM; Moscarello MA
    Biochemistry; 1986 Feb; 25(3):562-6. PubMed ID: 3955014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The secondary structure of a membrane-embedded peptide from the carboxy terminus of lipophilin as revealed by circular dichroism.
    Kahan I; Epand RM; Moscarello MA
    Biochim Biophys Acta; 1988 Jan; 952(2):230-7. PubMed ID: 3337826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intramembranous domains of lipophilin in phosphatidylcholine vesicles are similar to those in the myelin membrane.
    Kahan I; Moscarello MA
    Biochim Biophys Acta; 1986 Nov; 862(1):223-6. PubMed ID: 3768366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipophilin (proteolipid apoprotein) of brain white matter. Purification and amino acid sequence studies of the four tryptophan fragments.
    Stoffel W; Hillen H; Schröder W; Deutzmann R
    Hoppe Seylers Z Physiol Chem; 1982 Nov; 363(11):1397-407. PubMed ID: 7173828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic fluorescence of a hydrophobic myelin protein and some complexes with phospholipids.
    Cockle SA; Epand RM; Moscarello MA
    Biochemistry; 1978 Feb; 17(4):630-7. PubMed ID: 623735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of membrane-embedded domains of lipophilin from human myelin.
    Kahan I; Moscarello MA
    Biochemistry; 1985 Jan; 24(2):538-44. PubMed ID: 3978092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane orientation of lipophilin in phosphatidylcholine vesicles.
    Wood DD; Boggs JM; Moscarello MA
    Neurochem Res; 1980 Jul; 5(7):745-55. PubMed ID: 6158688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state.
    Merrill AR; Palmer LR; Szabo AG
    Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein).
    Stoffel W; Hillen H; Schröder W; Deutzmann R
    Hoppe Seylers Z Physiol Chem; 1983 Oct; 364(10):1455-66. PubMed ID: 6642431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similar effect of proteolipid apoproteins from human myelin (lipophilin) and bovine white matter on the lipid phase transition.
    Boggs JM; Clement IR; Moscarello MA
    Biochim Biophys Acta; 1980 Sep; 601(1):134-51. PubMed ID: 7407160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance of lipophilin, a hydrophobic myelin protein, to denaturation by urea and guanidinium salts.
    Cockle SA; Epand RM; Moscarello MA
    J Biol Chem; 1978 Nov; 253(22):8019-26. PubMed ID: 711734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of aromatic side chain residues in micelle binding by pancreatic colipase. Fluorescence studies of the porcine and equine proteins.
    McIntyre JC; Hundley P; Behnke WD
    Biochem J; 1987 Aug; 245(3):821-9. PubMed ID: 3663193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-spanning membrane protein insertion in membrane mimetic systems: role and localization of aromatic residues.
    Coïc YM; Vincent M; Gallay J; Baleux F; Mousson F; Beswick V; Neumann JM; de Foresta B
    Eur Biophys J; 2005 Dec; 35(1):27-39. PubMed ID: 16025323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-inserted colicin E1 channel domain: a topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration.
    Malenbaum SE; Merrill AR; London E
    J Nat Toxins; 1998 Oct; 7(3):269-90. PubMed ID: 9783264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of the cysteinyl residues in lipophilin from human myelin.
    Cockle SA; Epand RM; Stollery JG; Moscarello MA
    J Biol Chem; 1980 Oct; 255(19):9182-8. PubMed ID: 7410419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching and time-resolved fluorescence studies on Momordica charantia (bitter gourd) seed lectin.
    Padma P; Komath SS; Swamy MJ
    Biochem Mol Biol Int; 1998 Aug; 45(5):911-22. PubMed ID: 9739456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes.
    Caputo GA; London E
    Biochemistry; 2003 Mar; 42(11):3265-74. PubMed ID: 12641458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.