BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3955016)

  • 1. Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogues: correlation of NMR-determined rotamer populations and fluorescence kinetics.
    Laws WR; Ross JB; Wyssbrod HR; Beechem JM; Brand L; Sutherland JC
    Biochemistry; 1986 Feb; 25(3):599-607. PubMed ID: 3955016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved fluorescence and 1H NMR studies of tyrosyl residues in oxytocin and small peptides: correlation of NMR-determined conformations of tyrosyl residues and fluorescence decay kinetics.
    Ross JB; Laws WR; Buku A; Sutherland JC; Wyssbrod HR
    Biochemistry; 1986 Feb; 25(3):607-12. PubMed ID: 3955017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of tryptophan fluorescence intensity decay parameters with 1H NMR-determined rotamer conformations: [tryptophan2]oxytocin.
    Ross JB; Wyssbrod HR; Porter RA; Schwartz GP; Michaels CA; Laws WR
    Biochemistry; 1992 Feb; 31(6):1585-94. PubMed ID: 1737015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of alkyl group on amide nitrogen atom on fluorescence quenching of tyrosine amide and N-acetyltyrosine amide.
    Mrozek J; Rzeska A; Guzow K; Karolczak J; Wiczk W
    Biophys Chem; 2004 Oct; 111(2):105-13. PubMed ID: 15381308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model.
    Liu B; Thalji RK; Adams PD; Fronczek FR; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Nov; 124(44):13329-38. PubMed ID: 12405862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence of tryptophan dipeptides: correlations with the rotamer model.
    Chen RF; Knutson JR; Ziffer H; Porter D
    Biochemistry; 1991 May; 30(21):5184-95. PubMed ID: 2036384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotamer interconversion and its influence on the fluorescence decay of tyrosine: a molecular dynamics study.
    Kungl AJ
    Biophys Chem; 1992 Nov; 45(1):41-50. PubMed ID: 1467444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysical properties of tyrosine and its simple derivatives in organic solvents studied by time-resolved fluorescence spectroscopy and global analysis.
    Guzow K; Rzeska A; Mrozek J; Karolczak J; Majewski R; Szabelski M; Ossowski T; Wiczk W
    Photochem Photobiol; 2005; 81(3):697-704. PubMed ID: 15691226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD and 1H-n.m.r. studies on the side-chain conformation of tyrosine derivatives and tyrosine residues in di- and tripeptides.
    Juy M; Lam-Thanh H; Fermandjian S
    Int J Pept Protein Res; 1982 Oct; 20(4):298-307. PubMed ID: 7174195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of the rare amino acid LL-dityrosine and a dityrosine-containing peptide: comparison with time-resolved fluorescence.
    Kungl AJ; Breitenbach M; Kauffmann HF
    Biochim Biophys Acta; 1994 Dec; 1201(3):345-52. PubMed ID: 7803463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides.
    Adams PD; Chen Y; Ma K; Zagorski MG; Sönnichsen FD; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Aug; 124(31):9278-86. PubMed ID: 12149035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan side chain conformers monitored by NMR and time-resolved fluorescence spectroscopies.
    Julien O; Wang G; Jonckheer A; Engelborghs Y; Sykes BD
    Proteins; 2012 Jan; 80(1):239-45. PubMed ID: 22072563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan as a probe for acid-base equilibria in peptides.
    Marquezin CA; Hirata IY; Juliano L; Ito AS
    Biopolymers; 2003; 71(5):569-76. PubMed ID: 14635097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosyl rotamer interconversion rates and the fluorescence decays of N-acetyltyrosinamide and short tyrosyl peptides.
    Unruh JR; Liyanage MR; Johnson CK
    J Phys Chem B; 2007 May; 111(19):5494-502. PubMed ID: 17455970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance analyses of side chain conformations of histidine and aromatic amino acid derivatives. Solvent and pH dependence.
    Kobayashi J; Higashijima T; Miyazawa T
    Int J Pept Protein Res; 1984 Jul; 24(1):40-7. PubMed ID: 6480213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the separation of the charged groups and aromatic ring on interaction of tyrosine and phenylalanine analogues and derivatives with beta-cyclodextrin.
    Mrozek J; Banecki B; Karolczak J; Wiczk W
    Biophys Chem; 2005 Aug; 116(3):237-50. PubMed ID: 15896899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.
    Fernandez RM; Vieira RF; Nakaie CR; Lamy MT; Ito AS
    Biopolymers; 2005; 80(5):643-50. PubMed ID: 15657882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance study on solvent dependence of side chain conformations of tyrosine and tryptophan derivatives.
    Kobayashi J; Higashijima T; Sekido S; Miyazawa T
    Int J Pept Protein Res; 1981 Apr; 17(4):486-94. PubMed ID: 7309352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance study of side-chain conformation of tyrosyl residue in [Met5]-enkephalin. Solvent and temperature dependence.
    Kobayashi J; Higashijima T; Nagai U; Miyazawa T
    Biochim Biophys Acta; 1980 Feb; 621(2):190-203. PubMed ID: 7353038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence decay characteristics of indole compounds revealed by time-resolved area-normalized emission spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Phys Chem A; 2009 Mar; 113(12):2847-53. PubMed ID: 19254015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.