These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Protein-induced changes in nonplanarity of the porphyrin in nickel cytochrome c probed by resonance Raman spectroscopy. Ma JG; Laberge M; Song XZ; Jentzen W; Jia SL; Zhang J; Vanderkooi JM; Shelnutt JA Biochemistry; 1998 Apr; 37(15):5118-28. PubMed ID: 9548742 [TBL] [Abstract][Full Text] [Related]
23. Characteristics in tyrosine coordinations of four hemoglobins M probed by resonance Raman spectroscopy. Nagai M; Yoneyama Y; Kitagawa T Biochemistry; 1989 Mar; 28(6):2418-22. PubMed ID: 2730874 [TBL] [Abstract][Full Text] [Related]
24. Structural and dynamic properties of the homodimeric hemoglobin from Scapharca inaequivalvis Thr-72-->Ile mutant: molecular dynamics simulation, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy studies. Falconi M; Desideri A; Cupane A; Leone M; Ciccotti G; Peterson ES; Friedman JM; Gambacurta A; Ascoli F Biophys J; 1998 Nov; 75(5):2489-503. PubMed ID: 9788944 [TBL] [Abstract][Full Text] [Related]
25. Time-resolved resonance Raman study on the binding of carbon monoxide to recombinant human myoglobin and its distal histidine mutants. Sakan Y; Ogura T; Kitagawa T; Fraunfelter FA; Mattera R; Ikeda-Saito M Biochemistry; 1993 Jun; 32(22):5815-24. PubMed ID: 8504101 [TBL] [Abstract][Full Text] [Related]
26. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study. Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the resonance Raman spectra of carbon monoxy and oxy hemoglobin and myoglobin: similarities and differences in heme electron distribution. Rimai L; Salmeen I; Petering DH Biochemistry; 1975 Jan; 14(2):378-82. PubMed ID: 1120109 [TBL] [Abstract][Full Text] [Related]
28. The structural bases for the unique ligand binding properties of Glycera dibranchiata hemoglobins. A resonance Raman study. Carson SD; Constantinidis I; Mintorovitch J; Satterlee JD; Ondrias MR J Biol Chem; 1986 Feb; 261(5):2246-55. PubMed ID: 3944134 [TBL] [Abstract][Full Text] [Related]
29. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants. Peterson ES; Friedman JM; Chien EY; Sligar SG Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545 [TBL] [Abstract][Full Text] [Related]
30. A photolysis-triggered heme ligand switch in H93G myoglobin. Franzen S; Bailey J; Dyer RB; Woodruff WH; Hu RB; Thomas MR; Boxer SG Biochemistry; 2001 May; 40(17):5299-305. PubMed ID: 11318654 [TBL] [Abstract][Full Text] [Related]
31. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy. Wang D; Spiro TG Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699 [TBL] [Abstract][Full Text] [Related]
32. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Miller LM; Pedraza AJ; Chance MR Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857 [TBL] [Abstract][Full Text] [Related]
33. Intersubunit communication via changes in hemoglobin quaternary structures revealed by time-resolved resonance Raman spectroscopy: direct observation of the Perutz mechanism. Yamada K; Ishikawa H; Mizuno M; Shibayama N; Mizutani Y J Phys Chem B; 2013 Oct; 117(41):12461-8. PubMed ID: 24067234 [TBL] [Abstract][Full Text] [Related]
34. A resonance Raman enhancement mechanism for axial vibrational modes in the pyridine adduct of myoglobin proximal cavity mutant (H93G). Franzen S; Brown D; Gaff J; Delley B J Phys Chem B; 2012 Sep; 116(35):10514-21. PubMed ID: 22632602 [TBL] [Abstract][Full Text] [Related]
35. Acid-induced transformations of myoglobin. Characterization of a new equilibrium heme-pocket intermediate. Palaniappan V; Bocian DF Biochemistry; 1994 Nov; 33(47):14264-74. PubMed ID: 7947837 [TBL] [Abstract][Full Text] [Related]
36. Resonance Raman studies of nitric oxide binding to ferric and ferrous hemoproteins: detection of Fe(III)--NO stretching, Fe(III)--N--O bending, and Fe(II)--N--O bending vibrations. Benko B; Yu NT Proc Natl Acad Sci U S A; 1983 Nov; 80(22):7042-6. PubMed ID: 6580627 [TBL] [Abstract][Full Text] [Related]
37. Resonance Raman study of deoxy and ligated (O2 and CO) mesoheme IX-reconstituted myoglobin, hemoglobin and its alpha and beta subunits. Podstawka E; Proniewicz LM J Inorg Biochem; 2004 Sep; 98(9):1502-12. PubMed ID: 15337602 [TBL] [Abstract][Full Text] [Related]
38. Protein-heme interactions in hemoglobin from the mollusc Scapharca inaequivalvis: evidence from resonance Raman scattering. Song S; Boffi A; Chiancone E; Rousseau DL Biochemistry; 1993 Jun; 32(25):6330-6. PubMed ID: 8518278 [TBL] [Abstract][Full Text] [Related]
39. A carbon monoxide derivative of ruthenium (II) myoglobin probe of heme protein conformation. Srivastava TS Biochim Biophys Acta; 1977 Apr; 491(2):599-604. PubMed ID: 857909 [TBL] [Abstract][Full Text] [Related]
40. Porphyrins with exocyclic rings. 14. Synthesis of tetraacenaphthoporphyrins, a new family of highly conjugated porphyrins with record-breaking long-wavelength electronic absorptions. Spence JD; Lash TD J Org Chem; 2000 Mar; 65(5):1530-9. PubMed ID: 10814118 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]