These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 39550535)
1. HiFiBGC: an ensemble approach for improved biosynthetic gene cluster detection in PacBio HiFi-read metagenomes. Yadav A; Subramanian S BMC Genomics; 2024 Nov; 25(1):1096. PubMed ID: 39550535 [TBL] [Abstract][Full Text] [Related]
2. A rapid and efficient strategy to identify and recover biosynthetic gene clusters from soil metagenomes. Negri T; Mantri S; Angelov A; Peter S; Muth G; Eustáquio AS; Ziemert N Appl Microbiol Biotechnol; 2022 Apr; 106(8):3293-3306. PubMed ID: 35435454 [TBL] [Abstract][Full Text] [Related]
3. Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem. Sánchez-Navarro R; Nuhamunada M; Mohite OS; Wasmund K; Albertsen M; Gram L; Nielsen PH; Weber T; Singleton CM mSystems; 2022 Dec; 7(6):e0063222. PubMed ID: 36445112 [TBL] [Abstract][Full Text] [Related]
4. TaxiBGC: a Taxonomy-Guided Approach for Profiling Experimentally Characterized Microbial Biosynthetic Gene Clusters and Secondary Metabolite Production Potential in Metagenomes. Gupta VK; Bakshi U; Chang D; Lee AR; Davis JM; Chandrasekaran S; Jin YS; Freeman MF; Sung J mSystems; 2022 Dec; 7(6):e0092522. PubMed ID: 36378489 [TBL] [Abstract][Full Text] [Related]
5. Mining metagenomic data to gain a new insight into the gut microbial biosynthetic potential in placental mammals. Hu D; Zhang T; He S; Pu T; Yin Y; Hu Y Microbiol Spectr; 2024 Oct; 12(10):e0086424. PubMed ID: 39162518 [TBL] [Abstract][Full Text] [Related]
6. Improved Assembly of Metagenome-Assembled Genomes and Viruses in Tibetan Saline Lake Sediment by HiFi Metagenomic Sequencing. Tao Y; Xun F; Zhao C; Mao Z; Li B; Xing P; Wu QL Microbiol Spectr; 2023 Feb; 11(1):e0332822. PubMed ID: 36475839 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive assessment of 11 de novo HiFi assemblers on complex eukaryotic genomes and metagenomes. Yu W; Luo H; Yang J; Zhang S; Jiang H; Zhao X; Hui X; Sun D; Li L; Wei XQ; Lonardi S; Pan W Genome Res; 2024 Mar; 34(2):326-340. PubMed ID: 38428994 [TBL] [Abstract][Full Text] [Related]
8. Long-Read Metagenomics of Marine Microbes Reveals Diversely Expressed Secondary Metabolites. Huang R; Wang Y; Liu D; Wang S; Lv H; Yan Z Microbiol Spectr; 2023 Aug; 11(4):e0150123. PubMed ID: 37409950 [TBL] [Abstract][Full Text] [Related]
9. Evaluating long-read de novo assembly tools for eukaryotic genomes: insights and considerations. Cosma BM; Shirali Hossein Zade R; Jordan EN; van Lent P; Peng C; Pillay S; Abeel T Gigascience; 2022 Dec; 12():. PubMed ID: 38000912 [TBL] [Abstract][Full Text] [Related]
10. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes. Patin NV; Goodwin KD mSystems; 2022 Dec; 7(6):e0059522. PubMed ID: 36448813 [TBL] [Abstract][Full Text] [Related]
12. Deep self-supervised learning for biosynthetic gene cluster detection and product classification. Rios-Martinez C; Bhattacharya N; Amini AP; Crawford L; Yang KK PLoS Comput Biol; 2023 May; 19(5):e1011162. PubMed ID: 37220151 [TBL] [Abstract][Full Text] [Related]
13. Improved microbial genomes and gene catalog of the chicken gut from metagenomic sequencing of high-fidelity long reads. Zhang Y; Jiang F; Yang B; Wang S; Wang H; Wang A; Xu D; Fan W Gigascience; 2022 Nov; 11():. PubMed ID: 36399059 [TBL] [Abstract][Full Text] [Related]
14. Highly accurate long reads are crucial for realizing the potential of biodiversity genomics. Hotaling S; Wilcox ER; Heckenhauer J; Stewart RJ; Frandsen PB BMC Genomics; 2023 Mar; 24(1):117. PubMed ID: 36927511 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets. Portik DM; Brown CT; Pierce-Ward NT BMC Bioinformatics; 2022 Dec; 23(1):541. PubMed ID: 36513983 [TBL] [Abstract][Full Text] [Related]
16. Benchmarking short-, long- and hybrid-read assemblers for metagenome sequencing of complex microbial communities. Goussarov G; Mysara M; Cleenwerck I; Claesen J; Leys N; Vandamme P; Van Houdt R Microbiology (Reading); 2024 Jun; 170(6):. PubMed ID: 38916949 [TBL] [Abstract][Full Text] [Related]
17. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. Kieser S; Brown J; Zdobnov EM; Trajkovski M; McCue LA BMC Bioinformatics; 2020 Jun; 21(1):257. PubMed ID: 32571209 [TBL] [Abstract][Full Text] [Related]
18. NextPolish2: A Repeat-aware Polishing Tool for Genomes Assembled Using HiFi Long Reads. Hu J; Wang Z; Liang F; Liu SL; Ye K; Wang DP Genomics Proteomics Bioinformatics; 2024 May; 22(1):. PubMed ID: 38862426 [TBL] [Abstract][Full Text] [Related]
19. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. Waschulin V; Borsetto C; James R; Newsham KK; Donadio S; Corre C; Wellington E ISME J; 2022 Jan; 16(1):101-111. PubMed ID: 34253854 [TBL] [Abstract][Full Text] [Related]
20. Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing. Chen Z; Grim CJ; Ramachandran P; Meng J Microbiol Spectr; 2024 Jun; 12(6):e0011724. PubMed ID: 38687063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]