These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 3955059)

  • 21. Lead toxicity and heme biosynthesis.
    Lubran MM
    Ann Clin Lab Sci; 1980; 10(5):402-13. PubMed ID: 6999974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of terminal enzymes for heme biosynthesis during differentiation of mouse erythroleukemia cells.
    Taketani S; Yoshinaga T; Furukawa T; Kohno H; Tokunaga R; Nishimura K; Inokuchi H
    Eur J Biochem; 1995 Jun; 230(2):760-5. PubMed ID: 7607249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New developments in the regulation of heme metabolism and their implications.
    Maines MD
    Crit Rev Toxicol; 1984; 12(3):241-314. PubMed ID: 6378529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression and characterization of the terminal heme synthetic enzymes from the hyperthermophile Aquifex aeolicus.
    Wang KF; Dailey TA; Dailey HA
    FEMS Microbiol Lett; 2001 Aug; 202(1):115-9. PubMed ID: 11506917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells.
    Schoenfeld RA; Napoli E; Wong A; Zhan S; Reutenauer L; Morin D; Buckpitt AR; Taroni F; Lonnerdal B; Ristow M; Puccio H; Cortopassi GA
    Hum Mol Genet; 2005 Dec; 14(24):3787-99. PubMed ID: 16239244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Change in hemoproteid metabolism and its importance in the development of disorders of detoxication processes in patients with iron-deficiency anemia].
    Inoiatova FKh; Akbarova DSh
    Lik Sprava; 2005; (5-6):64-7. PubMed ID: 16396297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ubiquitous mitochondrial protein unfoldase CLPX regulates erythroid heme synthesis by control of iron utilization and heme synthesis enzyme activation and turnover.
    Rondelli CM; Perfetto M; Danoff A; Bergonia H; Gillis S; O'Neill L; Jackson L; Nicolas G; Puy H; West R; Phillips JD; Yien YY
    J Biol Chem; 2021 Aug; 297(2):100972. PubMed ID: 34280433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biphasic ordered induction of heme synthesis in differentiating murine erythroleukemia cells: role of erythroid 5-aminolevulinate synthase.
    Lake-Bullock H; Dailey HA
    Mol Cell Biol; 1993 Nov; 13(11):7122-32. PubMed ID: 8413301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic properties of the membrane-bound human liver mitochondrial protoporphyrinogen oxidase.
    Camadro JM; Abraham NG; Levere RD
    Arch Biochem Biophys; 1985 Oct; 242(1):206-12. PubMed ID: 4051500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-performance-liquid-chromatographic method for the assay of coproporphyrinogen oxidase activity in rat liver.
    Li F; Lim CK; Peters TJ
    Biochem J; 1986 Oct; 239(2):481-4. PubMed ID: 3814086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biosynthesis of porphyrins, chlorophylls, and vitamin B12.
    Leeper FJ
    Nat Prod Rep; 1985 Dec; 2(6):561-80. PubMed ID: 3913886
    [No Abstract]   [Full Text] [Related]  

  • 32. Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plants.
    Smith AG; Marsh O; Elder GH
    Biochem J; 1993 Jun; 292 ( Pt 2)(Pt 2):503-8. PubMed ID: 8503883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protoporphyrinogen oxidase and ferrochelatase in porphyria variegata.
    Viljoen DJ; Cummins R; Alexopoulos J; Kramer S
    Eur J Clin Invest; 1983 Aug; 13(4):283-7. PubMed ID: 6413214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performance liquid chromatographic assays for protoporphyrinogen oxidase and ferrochelatase in human leucocytes.
    Guo R; Lim CK; Peters TJ
    J Chromatogr; 1991 May; 566(2):383-96. PubMed ID: 1939451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Terminal steps of haem biosynthesis.
    Dailey HA
    Biochem Soc Trans; 2002 Aug; 30(4):590-5. PubMed ID: 12196143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic studies of human liver ferrochelatase. Role of endogenous metals.
    Camadro JM; Ibraham NG; Levere RD
    J Biol Chem; 1984 May; 259(9):5678-82. PubMed ID: 6425295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the Mitochondrial Heme Metabolism Complex.
    Medlock AE; Shiferaw MT; Marcero JR; Vashisht AA; Wohlschlegel JA; Phillips JD; Dailey HA
    PLoS One; 2015; 10(8):e0135896. PubMed ID: 26287972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protoporphyrinogen accumulation in cultured hepatocytes treated with the diphenyl ether herbicide, acifluorfen.
    Sinclair PR; Gorman N; Walton HS; Sinclair JF; Jacobs JM; Jacobs NJ
    Cell Mol Biol (Noisy-le-grand); 1994 Nov; 40(7):891-7. PubMed ID: 7849556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rat liver protoporphyrinogen IX oxidase: site of synthesis and factor influencing its activity.
    Kolarov J; Nelson BD; Kuzela S
    Biochem Biophys Res Commun; 1983 Oct; 116(2):383-7. PubMed ID: 6316951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heme metabolism and erythropoiesis in abnormal iron states: role of delta-aminolevulinic acid synthase and heme oxygenase.
    Abraham NG; Lutton JD; Levere RD
    Exp Hematol; 1985 Sep; 13(8):838-43. PubMed ID: 3840094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.