These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 3955083)
21. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866 [TBL] [Abstract][Full Text] [Related]
22. Accumulation of lipid peroxidation products in human cataracts. Babizhayev MA Acta Ophthalmol (Copenh); 1989 Jun; 67(3):281-7. PubMed ID: 2763816 [TBL] [Abstract][Full Text] [Related]
23. Lipid peroxide and reactive oxygen species generating systems of the crystalline lens. Babizhayev MA; Costa EB Biochim Biophys Acta; 1994 Feb; 1225(3):326-37. PubMed ID: 8312381 [TBL] [Abstract][Full Text] [Related]
24. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Babizhayev MA Biochim Biophys Acta; 1996 Mar; 1315(2):87-99. PubMed ID: 8608175 [TBL] [Abstract][Full Text] [Related]
25. [Role of free radical oxidation reaction in lens opacities after antiglaucoma surgery]. Kurysheva NI; Vinetskaia MI; Erichev VP; Uspenskaia AP Vestn Oftalmol; 1997; 113(4):14-7. PubMed ID: 9381634 [TBL] [Abstract][Full Text] [Related]
26. [Cataract induction by products of lipid peroxidation]. Babizhaev MA; Brikman IV; Deev AI Biofizika; 1987; 32(1):121-4. PubMed ID: 3814630 [TBL] [Abstract][Full Text] [Related]
27. The prevention of cataract caused by oxidative stress in cultured rat lenses. II. Early effects of photochemical stress and recovery. Spector A; Wang GM; Wang RR Exp Eye Res; 1993 Dec; 57(6):659-67. PubMed ID: 8150019 [TBL] [Abstract][Full Text] [Related]
28. [Free and bound SH groups in bovine lenses of different ages and in various lens parts]. Korte I; Hockwin O; Schwarz B Fortschr Ophthalmol; 1984; 81(5):454-6. PubMed ID: 6500426 [No Abstract] [Full Text] [Related]
29. Effect of curcumin on galactose-induced cataractogenesis in rats. Suryanarayana P; Krishnaswamy K; Reddy GB Mol Vis; 2003 Jun; 9():223-30. PubMed ID: 12802258 [TBL] [Abstract][Full Text] [Related]
30. The presence of a human UV filter within the lens represents an oxidative stress. Berry Y; Truscott RJ Exp Eye Res; 2001 Apr; 72(4):411-21. PubMed ID: 11273669 [TBL] [Abstract][Full Text] [Related]
31. Oxidative stress intensity in lens and aqueous depending on age-related cataract type and brunescense. Zoric L; Elek-Vlajic S; Jovanovic M; Kisic B; Djokic O; Canadanovic V; Cosic V; Jaksic V Eur J Ophthalmol; 2008; 18(5):669-74. PubMed ID: 18850540 [TBL] [Abstract][Full Text] [Related]
32. [Carnitine level in human lens and density of cataract]. Gawecki M; Raczyńska K; Homziuk M; Iwaszkiewicz-Bilikiewicz B Klin Oczna; 2004; 106(3 Suppl):409-10. PubMed ID: 15636217 [TBL] [Abstract][Full Text] [Related]
33. The reversal of triparanol-induced cataract in the rat. IV. Reduced sulfhydryl groups in soluble protein and glutathione. Rathbun WB; Harris JE; Vagstad G; Gruber L Invest Ophthalmol; 1973 May; 12(5):388-90. PubMed ID: 4708787 [No Abstract] [Full Text] [Related]
34. [Age-related features of cataractogenesis in salmon fry. I. Lipid composition of the lens in normal development]. Toĭvonen LV; Sidorov VS; Nefedova ZA; Iurovitskiĭ IuG Ontogenez; 2003; 34(1):24-7. PubMed ID: 12625070 [TBL] [Abstract][Full Text] [Related]
35. Lens lipid peroxides and glutathione concentrations in diabetic cataract. Ozmen D; Mutaf I; Ozmen B; Mentes J; Bayindir O Ann Clin Biochem; 1997 Mar; 34 ( Pt 2)():190-2. PubMed ID: 9133255 [TBL] [Abstract][Full Text] [Related]
36. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Rubbo H; Parthasarathy S; Barnes S; Kirk M; Kalyanaraman B; Freeman BA Arch Biochem Biophys; 1995 Dec; 324(1):15-25. PubMed ID: 7503550 [TBL] [Abstract][Full Text] [Related]
37. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Garner B; Davies MJ; Truscott RJ Exp Eye Res; 2000 Jan; 70(1):81-8. PubMed ID: 10644423 [TBL] [Abstract][Full Text] [Related]
38. Suppressive effects of thyroxine on glucocorticoid (gc)-induced metabolic changes and cataract formation on developing chick embryos. Kosano H; Watanabe H; Nishigori H Exp Eye Res; 2001 Jun; 72(6):643-8. PubMed ID: 11384152 [TBL] [Abstract][Full Text] [Related]
39. TEMPOL protects against lens DNA strand breaks and cataract in the x-rayed rabbit. Sasaki H; Lin LR; Yokoyama T; Sevilla MD; Reddy VN; Giblin FJ Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):544-52. PubMed ID: 9501865 [TBL] [Abstract][Full Text] [Related]
40. Modelling cortical cataractogenesis XXIV: uptake by the lens of glutathione injected into the rat. Stewart-DeHaan PJ; Dzialoszynski T; Trevithick JR Mol Vis; 1999 Dec; 5():37. PubMed ID: 10617774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]