These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39552067)

  • 1. BFAST: joint dimension reduction and spatial clustering with Bayesian factor analysis for zero-inflated spatial transcriptomics data.
    Xu Y; Lv D; Zou X; Wu L; Xu X; Zhao X
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39552067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An interpretable Bayesian clustering approach with feature selection for analyzing spatially resolved transcriptomics data.
    Li H; Zhu B; Jiang X; Guo L; Xie Y; Xu L; Li Q
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39073775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data.
    Guo Y; Zhu B; Tang C; Rong R; Ma Y; Xiao G; Xu L; Li Q
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39470304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data.
    Chakrabarti A; Ni Y; Mallick BK
    Sci Rep; 2024 Apr; 14(1):9516. PubMed ID: 38664448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.
    Cheng A; Hu G; Li WV
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data.
    Liu W; Liao X; Yang Y; Lin H; Yeong J; Zhou X; Shi X; Liu J
    Nucleic Acids Res; 2022 Jul; 50(12):e72. PubMed ID: 35349708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational solutions for spatial transcriptomics.
    Kleino I; FrolovaitÄ— P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpaGIC: graph-informed clustering in spatial transcriptomics via self-supervised contrastive learning.
    Liu W; Wang B; Bai Y; Liang X; Xue L; Luo J
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39541189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph deep learning enabled spatial domains identification for spatial transcriptomics.
    Liu T; Fang ZY; Li X; Zhang LN; Cao DS; Yin MZ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking clustering, alignment, and integration methods for spatial transcriptomics.
    Hu Y; Xie M; Li Y; Rao M; Shen W; Luo C; Qin H; Baek J; Zhou XM
    Genome Biol; 2024 Aug; 25(1):212. PubMed ID: 39123269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpaceX: gene co-expression network estimation for spatial transcriptomics.
    Acharyya S; Zhou X; Baladandayuthapani V
    Bioinformatics; 2022 Nov; 38(22):5033-5041. PubMed ID: 36179087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. spatiAlign: an unsupervised contrastive learning model for data integration of spatially resolved transcriptomics.
    Zhang C; Liu L; Zhang Y; Li M; Fang S; Kang Q; Chen A; Xu X; Zhang Y; Li Y
    Gigascience; 2024 Jan; 13():. PubMed ID: 39028588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DGSIST: Clustering spatial transcriptome data based on deep graph structure Infomax.
    Xiu YH; Sun SL; Zhou BW; Wan Y; Tang H; Long HX
    Methods; 2024 Nov; 231():226-236. PubMed ID: 39413889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GraphPCA: a fast and interpretable dimension reduction algorithm for spatial transcriptomics data.
    Yang J; Wang L; Liu L; Zheng X
    Genome Biol; 2024 Nov; 25(1):287. PubMed ID: 39511664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian semiparametric factor analysis model for subtype identification.
    Sun J; Warren JL; Zhao H
    Stat Appl Genet Mol Biol; 2017 Apr; 16(2):145-158. PubMed ID: 28343169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Primer on Preprocessing, Visualization, Clustering, and Phenotyping of Barcode-Based Spatial Transcriptomics Data.
    Ospina O; Soupir A; Fridley BL
    Methods Mol Biol; 2023; 2629():115-140. PubMed ID: 36929076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ST-SCSR: identifying spatial domains in spatial transcriptomics data via structure correlation and self-representation.
    Zhang M; Zhang W; Ma X
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39228303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.