These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3955571)

  • 41. Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides.
    Nihira T; Saito Y; Kitaoka M; Nishimoto M; Otsubo K; Nakai H
    Carbohydr Res; 2012 Nov; 361():49-54. PubMed ID: 22982171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of dextransucrase by alpha-D-glucose derivatives.
    Michiels AG; Wang AY; Clark DS; Blanch HW
    Appl Biochem Biotechnol; 1991 Dec; 31(3):237-46. PubMed ID: 1840171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reassessment of the catalytic mechanism of glycogen debranching enzyme.
    Liu W; Madsen NB; Braun C; Withers SG
    Biochemistry; 1991 Feb; 30(5):1419-24. PubMed ID: 1991122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Binding of small ligands to the 1,4-beta-glucan cellobiohydrolase II and influence of glucose on their affinity.
    Van Tilbeurgh H; Loontiens FG; Engelborgs Y; Claeyssens M
    Eur J Biochem; 1989 Oct; 184(3):553-9. PubMed ID: 2806239
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acceptor specificity and transfer efficiency of a beta-glycosidase from the Chinese white jade snail.
    Hu Y; Luan H; Liu H; Ge G; Zhou K; Liu Y; Yang L
    Biosci Biotechnol Biochem; 2009 Mar; 73(3):671-6. PubMed ID: 19270396
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of the trehalase of Trichoderma reesei with those from other sources.
    Alabran DM; Ball DH; Reese ET
    Carbohydr Res; 1983 Nov; 123(1):179-81. PubMed ID: 6686803
    [No Abstract]   [Full Text] [Related]  

  • 47. Role of periplasmic trehalase in uptake of trehalose by the thermophilic bacterium Rhodothermus marinus.
    Jorge CD; Fonseca LL; Boos W; Santos H
    J Bacteriol; 2008 Mar; 190(6):1871-8. PubMed ID: 18192391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel two-step enzymatic synthesis of blastose, a β-d-fructofuranosyl-(2↔6)-d-glucopyranose sucrose analogue.
    Miranda-Molina A; Castillo E; Lopez Munguia A
    Food Chem; 2017 Jul; 227():202-210. PubMed ID: 28274423
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrolyses of alpha- and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei.
    Konstantinidis AK; Marsden I; Sinnott ML
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):883-8. PubMed ID: 8489514
    [TBL] [Abstract][Full Text] [Related]  

  • 50. alpha-D-Glucopyranosyl fluoride as a D-glucopyranosyl donor for a glycosyltransferase complex from Streptococcus mutans FA1.
    Figures WR; Edwards JR
    Carbohydr Res; 1976 Jun; 48(2):245-53. PubMed ID: 947539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of 3-amino-3-deoxy derivatives of trehalose and sucrose and their activities.
    Asano N; Katayama K; Takeuchi M; Furumoto T; Kameda Y; Matsui K
    J Antibiot (Tokyo); 1989 Apr; 42(4):585-90. PubMed ID: 2498271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity.
    Miyazaki T; Ichikawa M; Yokoi G; Kitaoka M; Mori H; Kitano Y; Nishikawa A; Tonozuka T
    FEBS J; 2013 Sep; 280(18):4560-71. PubMed ID: 23826932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose.
    Biely P; Cziszárová M; Agger JW; Li XL; Puchart V; Vršanská M; Eijsink VG; Westereng B
    Biochim Biophys Acta; 2014 Jan; 1840(1):516-25. PubMed ID: 24128930
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of dispirodioxanyl pseudo-oligosaccharides by selective protonic activation of isomeric glycosylfructoses in anhydrous hydrogen fluoride.
    Defaye J; García Fernández JM
    Carbohydr Res; 1994 Jan; 251():1-15. PubMed ID: 8149367
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorine-19 NMR studies of glucosyl fluoride transport in human erythrocytes.
    London RE; Gabel SA
    Biophys J; 1995 Nov; 69(5):1814-8. PubMed ID: 8580324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in the activity and properties of trehalase during early germination of yeast ascospores: correlation with trehalose breakdown as studied by in vivo 13C NMR.
    Thevelein JM; den Hollander JA; Shulman RG
    Proc Natl Acad Sci U S A; 1982 Jun; 79(11):3503-7. PubMed ID: 6954495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Renal trehalase: two subsites at the substrate-binding site.
    Nakano M; Sacktor B
    Biochim Biophys Acta; 1984 Nov; 791(1):45-9. PubMed ID: 6498204
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzymic synthesis of alpha- and beta-D-glucosides of 1-deoxynojirimycin and their glycosidase inhibitory activities.
    Asano N; Oseki K; Kaneko E; Matsui K
    Carbohydr Res; 1994 May; 258():255-66. PubMed ID: 8039179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Completely β-selective glycosylation using 3,6-O-(o-xylylene)-bridged axial-rich glucosyl fluoride.
    Okada Y; Asakura N; Bando M; Ashikaga Y; Yamada H
    J Am Chem Soc; 2012 Apr; 134(16):6940-3. PubMed ID: 22475375
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Influence of parenterally injected trehalose in mammals having trehalase activity at different sites].
    Demelier JF; Labat J; Courtois JE
    Ann Biol Clin (Paris); 1975; 33(4):297-302. PubMed ID: 1211677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.