BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 39563)

  • 1. Biosynthesis of riboflavin: reductase and deaminase of Ashbya gossypii.
    Hollander I; Brown GM
    Biochem Biophys Res Commun; 1979 Jul; 89(2):759-63. PubMed ID: 39563
    [No Abstract]   [Full Text] [Related]  

  • 2. Reutilization of by-product for riboflavin formation in the riboflavin synthetase reaction.
    Mitsuda H; Nadamoto T; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(1):67-70. PubMed ID: 986426
    [No Abstract]   [Full Text] [Related]  

  • 3. GTP cyclohydrolase from Eremothecium ashbyii.
    Mehta HB; Modi VV
    Indian J Exp Biol; 1980 Mar; 18(3):243-4. PubMed ID: 7190128
    [No Abstract]   [Full Text] [Related]  

  • 4. Possibility of diacetyl and related compounds as the 4-carbon compound necessary for the formation of riboflavin in Ashbya gossypii.
    Nakajima K; Mitsuda H
    Acta Vitaminol Enzymol; 1984; 6(4):271-82. PubMed ID: 6534171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboflavin synthetase from Eremothecium ashbyii and a salvage pathway of the by-product in the enzyme reaction.
    Mitsuda H; Nakajima K; Nadamoto T; Yamada Y
    Methods Enzymol; 1980; 66():307-23. PubMed ID: 6768961
    [No Abstract]   [Full Text] [Related]  

  • 6. Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light.
    Stahmann KP; Arst HN; Althöfer H; Revuelta JL; Monschau N; Schlüpen C; Gätgens C; Wiesenburg A; Schlösser T
    Environ Microbiol; 2001 Sep; 3(9):545-50. PubMed ID: 11683864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of riboflavin. Bifunctional pyrimidine deaminase/reductase of Escherichia coli and Bacillus subtilis.
    Fischer M; Eberhardt S; Richter G; Krieger C; Gerstenschlåger I; Bacher A
    Biochem Soc Trans; 1996 Feb; 24(1):35S. PubMed ID: 8674703
    [No Abstract]   [Full Text] [Related]  

  • 8. Catalytic properties of riboflavin synthetase from a high-riboflavinogenic Eremothecium ashbyii.
    Suzuki Y; Nishikawa Y; Mitsuda H
    J Nutr Sci Vitaminol (Tokyo); 1974; 20(4):301-16. PubMed ID: 4612121
    [No Abstract]   [Full Text] [Related]  

  • 9. Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii.
    Monschau N; Sahm H; Stahmann K
    Appl Environ Microbiol; 1998 Nov; 64(11):4283-90. PubMed ID: 9797278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of ribose reductase from a flavinogenic culture of Eremothecium ashbyii.
    Madia AM; Mattoo AK; Modi VV
    Indian J Biochem Biophys; 1976 Sep; 13(3):228-33. PubMed ID: 827492
    [No Abstract]   [Full Text] [Related]  

  • 11. 8-azaguanine and flavinogenesis in Eremothecium ashbyii.
    Madia AM; Mattoo AK; Modi VV
    Biochim Biophys Acta; 1975 Mar; 385(1):51-7. PubMed ID: 164925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a proteasome inhibitor on the riboflavin production in Ashbya gossypii.
    Kato T; Yokomori A; Suzuki R; Azegami J; El Enshasy HA; Park EY
    J Appl Microbiol; 2022 Feb; 132(2):1176-1184. PubMed ID: 34496097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of riboflavin by Ashbya gossypii. I. The influence of fats of the animal origin on the riboflavin production.
    Szcześniak T; Karabin L; Szczepankowska M; Wituch K
    Acta Microbiol Pol B; 1971; 3(1):29-34. PubMed ID: 5103479
    [No Abstract]   [Full Text] [Related]  

  • 14. Biosynthesis of riboflavin by Ashbya gossypii. II. The influence of animal proteins on the riboflavin biosynthesis.
    Szcześniak T; Karabin L; Szczepanowska M; Wituch K
    Acta Microbiol Pol B; 1971; 3(2):91-5. PubMed ID: 5105633
    [No Abstract]   [Full Text] [Related]  

  • 15. [The effect of guanine on the growth, variability and de novo biosynthesis of purines by Pichia guilliermondii mutants with guanine deaminase block].
    Shavlovskiĭ GM; Kuznetsova RA
    Mikrobiologiia; 1974; 43(6):1010-6. PubMed ID: 4449488
    [No Abstract]   [Full Text] [Related]  

  • 16. Growth stress triggers riboflavin overproduction in Ashbya gossypii.
    Schlösser T; Wiesenburg A; Gätgens C; Funke A; Viets U; Vijayalakshmi S; Nieland S; Stahmann KP
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):569-78. PubMed ID: 17639374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii.
    Förster C; Santos MA; Ruffert S; Krämer R; Revuelta JL
    J Biol Chem; 1999 Apr; 274(14):9442-8. PubMed ID: 10092625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of various metabolites (sugars, carboxylic acids and alcohols) on riboflavin formation in non-growing cells of Ashbya gossypii.
    Mitsuda H; Nakajima K; Ikeda Y
    J Nutr Sci Vitaminol (Tokyo); 1978; 24(2):91-103. PubMed ID: 27596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of riboflavin. Characterization of the product of the deaminase.
    Nielsen P; Bacher A
    Biochim Biophys Acta; 1981 Dec; 662(2):312-7. PubMed ID: 7317443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New biotechnological applications for Ashbya gossypii: Challenges and perspectives.
    Aguiar TQ; Silva R; Domingues L
    Bioengineered; 2017 Jul; 8(4):309-315. PubMed ID: 27791453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.