These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 3956445)

  • 1. The superstructure of chromatin and its condensation mechanism. I. Synchrotron radiation X-ray scattering results.
    Bordas J; Perez-Grau L; Koch MH; Vega MC; Nave C
    Eur Biophys J; 1986; 13(3):157-73. PubMed ID: 3956445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The superstructure of chromatin and its condensation mechanism. II. Theoretical analysis of the X-ray scattering patterns and model calculations.
    Bordas J; Perez-Grau L; Koch MH; Vega MC; Nave C
    Eur Biophys J; 1986; 13(3):175-85. PubMed ID: 3956446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin superstructure: synchrotron radiation X-ray scattering study on solutions and gels.
    Perez-Grau L; Bordas J; Koch MH
    Nucleic Acids Res; 1984 Mar; 12(6):2987-96. PubMed ID: 6709504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The higher order structure of chromatin and histone H1.
    Thomas JO
    J Cell Sci Suppl; 1984; 1():1-20. PubMed ID: 6397467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The superstructure of chromatin and its condensation mechanism. III: Effect of monovalent and divalent cations X-ray solution scattering and hydrodynamic studies.
    Koch MH; Vega MC; Sayers Z; Michon AM
    Eur Biophys J; 1987; 14(5):307-19. PubMed ID: 3569164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The superstructure of chromatin and its condensation mechanism. V. Effect of linker length, condensation by multivalent cations, solubility and electric dichroism properties.
    Koch MH; Sayers Z; Michon AM; Marquet R; Houssier C; Willführ J
    Eur Biophys J; 1988; 16(3):177-85. PubMed ID: 3191886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small angle scattering of cell nuclei.
    Notbohm H
    Eur Biophys J; 1986; 13(6):367-72. PubMed ID: 3757931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The superstructure of chromatin and its condensation mechanism. VI. Electric dichroism and model calculations.
    Koch MH; Sayers Z; Michon AM; Sicre P; Marquet R; Houssier C
    Eur Biophys J; 1989; 17(5):245-55. PubMed ID: 2636963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The superstructure of chromatin and its condensation mechanism. IV. Enzymatic digestion, thermal denaturation, effect of netropsin and distamycin.
    Koch MH; Sayers Z; Vega MC; Michon AM
    Eur Biophys J; 1987; 15(3):133-40. PubMed ID: 2832142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutron scattering studies on chromatin higher-order structure.
    Graziano V; Gerchman SE; Schneider DK; Ramakrishnan V
    Basic Life Sci; 1996; 64():127-36. PubMed ID: 9031508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure.
    Ruiz-Carrillo A; Puigdomènech P; Eder G; Lurz R
    Biochemistry; 1980 Jun; 19(12):2544-54. PubMed ID: 6772200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone H5 promotes the association of condensed chromatin fragments to give pseudo-higher-order structures.
    Thomas JO; Rees C; Pearson EC
    Eur J Biochem; 1985 Feb; 147(1):143-51. PubMed ID: 3971973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the domains of histones H1 and H5 in the structural organization of soluble chromatin.
    Thoma F; Losa R; Koller T
    J Mol Biol; 1983 Jul; 167(3):619-40. PubMed ID: 6876160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron scatter and diffraction techniques applied to nucleosome and chromatin structure.
    Bradbury EM; Baldwin JP
    Cell Biophys; 1986 Dec; 9(1-2):35-66. PubMed ID: 2436800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection of discrete DNA fragments by the complex H1-octamerhistones or H5-octamerhistones after micrococcal nuclease digestion.
    Muyldermans S; Lasters I; Wyns L; Hamers R
    Nucleic Acids Res; 1981 Aug; 9(15):3671-80. PubMed ID: 7279670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exchange of histones H1 and H5 between chromatin fragments. A preference of H5 for higher-order structures.
    Thomas JO; Rees C
    Eur J Biochem; 1983 Jul; 134(1):109-15. PubMed ID: 6861754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible in vitro packing of nucleosomal filaments into globular supranucleosomal units in chromatin of whole chick erythrocyte nuclei.
    Zentgraf H; Müller U; Franke WW
    Eur J Cell Biol; 1980 Dec; 23(1):171-88. PubMed ID: 7460964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased stability of the higher order structure of chicken erythrocyte chromatin: nanosecond anisotropy studies of intercalated ethidium.
    Ashikawa I; Kinosita K; Ikegami A; Nishimura Y; Tsuboi M
    Biochemistry; 1985 Mar; 24(6):1291-7. PubMed ID: 3986177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
    Williams SP; Langmore JP
    Biophys J; 1991 Mar; 59(3):606-18. PubMed ID: 2049522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of histone H5 in the subunit organization of chromatin using immunoelectron microscopy.
    Mazen A; De Murcia G; Bernard S; Pouyet J; Champagne M
    Eur J Biochem; 1982 Sep; 127(1):169-76. PubMed ID: 7140753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.