These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 3957563)

  • 1. Progressive renal damage due to lead intoxication in early life.
    Tejani A; Lancman I; Rajkumar S
    Int J Pediatr Nephrol; 1986; 7(1):9-12. PubMed ID: 3957563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance of the rat to development of lead-induced renal functional deficits.
    O'Flaherty EJ; Adams WD; Hammond PB; Taylor E
    J Toxicol Environ Health; 1986; 18(1):61-75. PubMed ID: 3701882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal renal structural alterations during the development of diabetes mellitus in Otsuka Long-Evans Tokushima Fatty rats.
    Koike T; Tomoda F; Kinuno H; Inoue H; Takata M
    Acta Physiol Scand; 2005 May; 184(1):73-81. PubMed ID: 15847646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of renal function in the rat. The measurement of GFR and ERPF and correlation to body and kidney weight.
    Provoost AP; de Keijzer MH; Wolff ED; Molenaar JC
    Ren Physiol; 1983; 6(1):1-9. PubMed ID: 6836167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversal of acute tacrolimus-induced renal vasoconstriction by theophylline in rats.
    McLaughlin GE; Kashimawo LA; Steele BW; Kuluz JW
    Pediatr Crit Care Med; 2003 Jul; 4(3):358-62. PubMed ID: 12831420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental model of lead nephropathy. IV. Correlation between renal functional changes and hematological indices of lead toxicity.
    Khalil-Manesh F; Tartaglia-Erler J; Gonick HC
    J Trace Elem Electrolytes Health Dis; 1994 Mar; 8(1):13-9. PubMed ID: 7804024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of uninephrectomy on renal structural properties in spontaneously hypertensive rats.
    Kinuno H; Tomoda F; Koike T; Takata M; Inoue H
    Clin Exp Pharmacol Physiol; 2005 Mar; 32(3):173-8. PubMed ID: 15743399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive renal insufficiency induces increasing protection against ischemic acute renal failure.
    Zager RA; Baltes LA
    J Lab Clin Med; 1984 Apr; 103(4):511-23. PubMed ID: 6699471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A re-evaluation of the renal ablation model of progressive renal disease in rats.
    Kim KH; Kim Y; Park HW; Jeong HJ; Mauer M
    J Nephrol; 2003; 16(2):196-202. PubMed ID: 12768066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead intoxication during development: its late effects on kidney function and blood pressure.
    Aviv A; John E; Bernstein J; Goldsmith DI; Spitzer A
    Kidney Int; 1980 Apr; 17(4):430-7. PubMed ID: 7392418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet.
    Sahajpal V; Ashton N
    Clin Sci (Lond); 2003 Jun; 104(6):607-14. PubMed ID: 12519092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin-converting enzyme inhibition and calcium channel blockade both normalize early hyperfiltration in experimental diabetes, but only the former prevents late renal structural damage.
    Perico N; Amuchastegui CS; Malanchini B; Bertani T; Remuzzi G
    Exp Nephrol; 1994; 2(4):220-8. PubMed ID: 8069658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal gangliosides are involved in lead intoxication.
    Aguilar RP; Genta S; Sánchez S
    J Appl Toxicol; 2008 Mar; 28(2):122-31. PubMed ID: 17503479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of KATP channel blocker U37883A on renal function in experimental diabetes mellitus in rats.
    Vallon V; Albinus M; Blach D
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1215-21. PubMed ID: 9732381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of N-acetyl-L-cysteine on renal haemodynamics and function in early ischaemia-reperfusion injury in rats.
    Nitescu N; Grimberg E; Ricksten SE; Guron G
    Clin Exp Pharmacol Physiol; 2006; 33(1-2):53-7. PubMed ID: 16445699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal haemodynamics and function in weanling rats treated with enalapril from birth.
    Guron G
    Clin Exp Pharmacol Physiol; 2005 Oct; 32(10):865-70. PubMed ID: 16173949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal effects and erythrocyte oxidative stress in long-term low-level lead-exposed adolescent workers in auto repair workshops.
    Oktem F; Arslan MK; Dündar B; Delibas N; Gültepe M; Ergürhan Ilhan I
    Arch Toxicol; 2004 Dec; 78(12):681-7. PubMed ID: 15526091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of lead poisoning to renal impairment.
    Restek-Samarzija N; Momcilović B; Turk R; Samarzija M
    Arh Hig Rada Toksikol; 1997 Dec; 48(4):355-64. PubMed ID: 9721454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lead exposure on renal function in young rats.
    Johnson DR; Kleinman LI
    Toxicol Appl Pharmacol; 1979 May; 48(3):361-7. PubMed ID: 473184
    [No Abstract]   [Full Text] [Related]  

  • 20. Occupational lead nephropathy.
    Wedeen RP; Maesaka JK; Weiner B; Lipat GA; Lyons MM; Vitale LF; Joselow MM
    Am J Med; 1975 Nov; 59(5):630-41. PubMed ID: 1200035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.