These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3957600)

  • 1. Spatial resolution analysis of computed tomographic images.
    Assimakopoulos PA; Boyd DP; Jaschke W; Lipton MJ
    Invest Radiol; 1986 Mar; 21(3):260-71. PubMed ID: 3957600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of modulation transfer function shape on computed tomographic image quality.
    Joseph PM; Stockham CD
    Radiology; 1982 Oct; 145(1):179-85. PubMed ID: 7122876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An effective method to verify line and point spread functions measured in computed tomography.
    Ohkubo M; Wada S; Matsumoto T; Nishizawa K
    Med Phys; 2006 Aug; 33(8):2757-64. PubMed ID: 16964851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm for automated modulation transfer function measurement using an edge of a PMMA phantom: Impact of field of view on spatial resolution of CT images.
    Anam C; Fujibuchi T; Budi WS; Haryanto F; Dougherty G
    J Appl Clin Med Phys; 2018 Nov; 19(6):244-252. PubMed ID: 30338920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image techniques for multiplanar computed tomography.
    Johnson GA; Korobkin M
    Radiology; 1982 Sep; 144(4):829-34. PubMed ID: 7111733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of contrast -- detail -- dose evaluation of image quality in a computed tomographic scanner.
    Cohen G; DiBianca FA
    J Comput Assist Tomogr; 1979 Apr; 3(2):189-95. PubMed ID: 429627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for determining the modulation transfer function from thick microwire profiles measured with x-ray microcomputed tomography.
    Nakaya Y; Kawata Y; Niki N; Umetatni K; Ohmatsu H; Moriyama N
    Med Phys; 2012 Jul; 39(7):4347-64. PubMed ID: 22830768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms.
    Richard S; Husarik DB; Yadava G; Murphy SN; Samei E
    Med Phys; 2012 Jul; 39(7):4115-22. PubMed ID: 22830744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of focal spot blooming on high-contrast spatial resolution in CT imaging.
    Grimes J; Duan X; Yu L; Halaweish AF; Haag N; Leng S; McCollough C
    Med Phys; 2015 Oct; 42(10):6011-20. PubMed ID: 26429276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique.
    McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T
    Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of a newly developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay): system configuration and physical properties.
    Araki K; Maki K; Seki K; Sakamaki K; Harata Y; Sakaino R; Okano T; Seo K
    Dentomaxillofac Radiol; 2004 Jan; 33(1):51-9. PubMed ID: 15140823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and control of contrast in CT.
    Barnes JE
    Radiographics; 1992 Jul; 12(4):825-37. PubMed ID: 1636042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to measure the MTF of digital x-ray systems.
    Sones RA; Barnes GT
    Med Phys; 1984; 11(2):166-71. PubMed ID: 6727791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies.
    Kalender WA; Perman WH; Vetter JR; Klotz E
    Med Phys; 1986; 13(3):334-9. PubMed ID: 3724693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between pixel values in a cone-beam computed tomographic scanner and the computed tomographic values in a multidetector row computed tomographic scanner.
    Chindasombatjaroen J; Kakimoto N; Shimamoto H; Murakami S; Furukawa S
    J Comput Assist Tomogr; 2011; 35(5):662-5. PubMed ID: 21926866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional edge-preserving image enhancement for computed tomography.
    Villain N; Goussard Y; Idier J; Allain M
    IEEE Trans Med Imaging; 2003 Oct; 22(10):1275-87. PubMed ID: 14552581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer modeling of the spatial resolution properties of a dedicated breast CT system.
    Yang K; Kwan AL; Boone JM
    Med Phys; 2007 Jun; 34(6):2059-69. PubMed ID: 17654909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computed tomography commissioning programmes: how to obtain a reliable MTF with an automatic approach?
    Miéville F; Beaumont S; Torfeh T; Gudinchet F; Verdun FR
    Radiat Prot Dosimetry; 2010; 139(1-3):443-8. PubMed ID: 20167797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical and experimental investigation of a smoothed CT reconstruction algorithm.
    Joseph PM; Hilal SK; Schulz RA; Kelcz F
    Radiology; 1980 Feb; 134(2):507-16. PubMed ID: 7352241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Techniques and applications of automatic tube current modulation for CT.
    Kalra MK; Maher MM; Toth TL; Schmidt B; Westerman BL; Morgan HT; Saini S
    Radiology; 2004 Dec; 233(3):649-57. PubMed ID: 15498896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.