BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 3957735)

  • 1. Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8).
    Song CW; Rhee JG; Lee CK; Levitt SH
    Int J Radiat Oncol Biol Phys; 1986 Mar; 12(3):365-72. PubMed ID: 3957735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precooling prevents overheating of subcutaneous fat in the use of RF capacitive heating.
    Rhee JG; Lee CK; Osborn J; Levitt SH; Song CW
    Int J Radiat Oncol Biol Phys; 1991 May; 20(5):1009-15. PubMed ID: 2022500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry.
    Hiraoka M; Jo S; Akuta K; Nishimura Y; Takahashi M; Abe M
    Cancer; 1987 Jul; 60(1):121-7. PubMed ID: 3581026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical experience using 8 MHz radiofrequency capacitive hyperthermia in combination with radiotherapy: results of a phase I/II study.
    Lee CK; Song CW; Rhee JG; Foy JA; Levitt SH
    Int J Radiat Oncol Biol Phys; 1995 Jun; 32(3):733-45. PubMed ID: 7790260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical experience with thermotron RF-8 capacitive heating for bulky tumors: University of Minnesota experience.
    Lee CK; Song CW; Rhee JG; Levitt SH
    Radiol Clin North Am; 1989 May; 27(3):543-58. PubMed ID: 2928494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-heating characteristics of an RF capacitive heating device.
    Kato H; Hiraoka M; Nakajima T; Ishida T
    Int J Hyperthermia; 1985; 1(1):15-28. PubMed ID: 3915511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Thermal distribution in the agar phantom by a new intracavitary RF applicator for prostate gland].
    Inatomi H; Sugita A; Terashima H; Yoshiura T; Kunugita N; Norimura T; Tsuchiya T
    J UOEH; 1992 Mar; 14(1):39-45. PubMed ID: 1509211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Temperature distribution and geometry of the electrodes in RF interstitial hyperthermia using circular and interstitial electrodes].
    Kataoka M; Nishiyama Y; Fujii T; Kawamura M; Mogami H; Itoh H; Iio A; Hamamoto K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1992 May; 52(5):646-52. PubMed ID: 1508637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy.
    Abe M; Hiraoka M; Takahashi M; Egawa S; Matsuda C; Onoyama Y; Morita K; Kakehi M; Sugahara T
    Cancer; 1986 Oct; 58(8):1589-95. PubMed ID: 3756783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new capacitive heating applicator for the simultaneous radiohyperthermotherapy of superficial and shallow-seated tumors.
    Tanaka A; Kuroda M; Inamura K; Kawasaki S; Hiraki Y
    Acta Med Okayama; 1994 Aug; 48(4):211-6. PubMed ID: 7817776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating.
    Franconi C; Raganella L; Tiberio CA
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems: a simulation study.
    Kok HP; Navarro F; Strigari L; Cavagnaro M; Crezee J
    Int J Hyperthermia; 2018 Sep; 34(6):714-730. PubMed ID: 29509043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Present and future status of noninvasive selective deep heating using RF in hyperthermia.
    Kato H; Ishida T
    Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia.
    Hiraki Y; Nakajo M; Takeshita T; Churei H
    Int J Hyperthermia; 2000; 16(3):205-18. PubMed ID: 10830584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth.
    Kuroda S; Uchida N; Sugimura K; Kato H
    Med Biol Eng Comput; 1999 May; 37(3):285-90. PubMed ID: 10505376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.
    Winter L; Özerdem C; Hoffmann W; Santoro D; Müller A; Waiczies H; Seemann R; Graessl A; Wust P; Niendorf T
    PLoS One; 2013; 8(4):e61661. PubMed ID: 23613896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of a radiofrequency device for heating superficial and deep-seated tumors].
    Sugahara T
    Med Radiol (Mosk); 1988 Dec; 33(12):10-4. PubMed ID: 3205115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local RF capacitive hyperthermia: thermal profiles and tumour response.
    Reddy NM; Maithreyan V; Vasanthan A; Balakrishnan IS; Bhaskar BK; Jayaraman R; Shanta V; Krishnamurthi S
    Int J Hyperthermia; 1987; 3(4):379-87. PubMed ID: 3668319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new inductive applicator for hyperthermia.
    Kato H; Ishida T
    J Microw Power; 1983 Dec; 18(4):331-6. PubMed ID: 6561255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.