These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3957894)

  • 1. Binding between thermolysin and its specific inhibitor, N-phosphoryl-L-leucyl-L-tryptophan (PLT).
    Kitagishi K; Hiromi K
    J Biochem; 1986 Jan; 99(1):191-7. PubMed ID: 3957894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding between thermolysin and its specific inhibitor, phosphoramidon.
    Kitagishi K; Hiromi K
    J Biochem; 1984 Feb; 95(2):529-34. PubMed ID: 6715312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding between thermolysin and talopeptin (MKI) in which the tryptophan residue was converted into kynurenine.
    Kitagishi K; Hiromi K; Tokushige M
    J Biochem; 1983 Apr; 93(4):1045-54. PubMed ID: 6863233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of binding between thermolysin and Streptomyces metalloprotease inhibitor, talopeptin (MKI).
    Kitagishi K; Hiromi K
    J Biochem; 1983 Jan; 93(1):55-9. PubMed ID: 6341370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium study on the binding between thermolysin and Streptomyces metalloprotease inhibitor, talopeptin (MKI).
    Kitagishi K; Hiromi K; Oda K; Murao S
    J Biochem; 1983 Jan; 93(1):47-53. PubMed ID: 6341369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the chemical modification of tryptophan residues in thermolysin and in talopeptin (MKI) with N-bromosuccinimide.
    Kitagishi K; Hiromi K
    J Biochem; 1983 Jul; 94(1):129-35. PubMed ID: 6619105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1977 Jan; 81(1):99-105. PubMed ID: 845140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases.
    Monzingo AF; Matthews BW
    Biochemistry; 1984 Nov; 23(24):5724-9. PubMed ID: 6395881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides.
    Hangauer DG; Monzingo AF; Matthews BW
    Biochemistry; 1984 Nov; 23(24):5730-41. PubMed ID: 6525336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cobalt-substitution of the active zinc ion in thermolysin on its activity and active-site microenvironment.
    Kuzuya K; Inouye K
    J Biochem; 2001 Dec; 130(6):783-8. PubMed ID: 11726278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the formation and stability of a complex between Streptomyces proteinaceous metalloprotease inhibitor and thermolysin.
    Kunugi S; Yanagi Y; Oda K
    Eur J Biochem; 1999 Feb; 259(3):815-20. PubMed ID: 10092869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The binding of L-valyl-L-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis.
    Holden HM; Matthews BW
    J Biol Chem; 1988 Mar; 263(7):3256-60. PubMed ID: 3343246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding to thermolysin of phenolate-containing inhibitors necessitates a revised mechanism of catalysis.
    Mock WL; Aksamawati M
    Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):57-68. PubMed ID: 8068024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism.
    Mock WL; Stanford DJ
    Biochemistry; 1996 Jun; 35(23):7369-77. PubMed ID: 8652513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH and temperature dependences of thermolysin catalysis. Catalytic role of zinc-coordinated water.
    Kunugi S; Hirohara H; Ise N
    Eur J Biochem; 1982 May; 124(1):157-63. PubMed ID: 7084222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electron withdrawing substituents on substrate hydrolysis by and inhibition of rat neutral endopeptidase 24.11 (enkephalinase) and thermolysin.
    Bateman RC; Rodriguez G; Vijayaraghavan J; Hersh LB
    Arch Biochem Biophys; 1990 Jun; 279(2):355-62. PubMed ID: 2350181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH, temperature, and alcohols on the remarkable activation of thermolysin by salts.
    Inouye K; Lee SB; Nambu K; Tonomura B
    J Biochem; 1997 Aug; 122(2):358-64. PubMed ID: 9378714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible role for water dissociation in the slow binding of phosphorus-containing transition-state-analogue inhibitors of thermolysin.
    Bartlett PA; Marlowe CK
    Biochemistry; 1987 Dec; 26(26):8553-61. PubMed ID: 3442676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of amino acid residues at the cleavable site of substrates on the remarkable activation of thermolysin by salts.
    Inouye K; Lee SB; Tonomura B
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):133-8. PubMed ID: 8670097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.