These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 3958246)

  • 1. Regeneration of the cerebellofugal projection after transection of the superior cerebellar peduncle in kittens: morphological and electrophysiological studies.
    Kawaguchi S; Miyata H; Kato N
    J Comp Neurol; 1986 Mar; 245(2):258-73. PubMed ID: 3958246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of the cerebellofugal projection after transection of the superior cerebellar peduncle in the cat.
    Kawaguchi S
    Acta Neurochir Suppl (Wien); 1987; 41():8-17. PubMed ID: 2833075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and electrophysiological evidence for axonal regeneration of axotomized cerebellothalamic neurons in kittens.
    Kawaguchi S; Miyata H; Kawamura M; Harada Y
    Neurosci Lett; 1981 Aug; 25(1):13-8. PubMed ID: 7279300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellothalamic projections in the rat: an autoradiographic and degeneration study.
    Haroian AJ; Massopust LC; Young PA
    J Comp Neurol; 1981 Apr; 197(2):217-36. PubMed ID: 7276233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cerebellofugal projections in the brachium conjunctivum of the rat I. The contralateral ascending pathway.
    Faull RL; Carman JB
    J Comp Neurol; 1978 Apr; 178(3):495-517. PubMed ID: 19626723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient cerebrocerebellar projections in kittens: postnatal development and topography.
    Tolbert DL; Panneton WM
    J Comp Neurol; 1983 Dec; 221(2):216-28. PubMed ID: 6655083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical regeneration and behavioral recovery following crush injury of the trigeminal root in lamprey.
    Calton JL; Philbrick K; McClellan AD
    J Comp Neurol; 1998 Jul; 396(3):322-37. PubMed ID: 9624587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projections from the lowest lumbar and sacral-caudal segments to the cerebellar nuclei in the rat, studied by anterograde axonal tracing.
    Matsushita M
    J Comp Neurol; 1999 Feb; 404(1):21-32. PubMed ID: 9886022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aberrant retino-retinal projection during optic nerve regeneration in the frog. II. Anterograde labeling with horseradish peroxidase.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):621-32. PubMed ID: 6970757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological evidence for axonal sprouting of cerebellothalamic neurons in kittens after neonatal hemicerebellectomy.
    Kawaguchi S; Yamamoto T; Samejima A; Itoh K; Mizuno N
    Exp Brain Res; 1979 May; 35(3):511-8. PubMed ID: 456456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional projection of regenerated rat sural nerve axons to the hindpaw skin after sciatic nerve lesions.
    Povlsen B; Hildebrand C; Wiesenfeld-Hallin Z; Stankovic N
    Exp Neurol; 1993 Jan; 119(1):99-106. PubMed ID: 8432355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological evidence for axonal sprouting of cerebellothalamic neurons in kittens after neonatal hemicerebellectomy.
    Kawaguchi S; Yamamoto T; Samejima A
    Exp Brain Res; 1979 Jun; 36(1):21-39. PubMed ID: 467533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long distance axonal regeneration of identified lamprey reticulospinal neurons.
    Davis GR; McClellan AD
    Exp Neurol; 1994 May; 127(1):94-105. PubMed ID: 7515355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cerebellopontine system in the rat. I. Autoradiographic studies.
    Watt CB; Mihailoff GA
    J Comp Neurol; 1983 Apr; 215(3):312-30. PubMed ID: 6304158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology.
    Sugihara I; Ebata S; Shinoda Y
    J Comp Neurol; 2004 Mar; 470(2):113-33. PubMed ID: 14750156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogenesis of the cerebellofugal projection in the rat.
    Kawaguchi S; Murata M; Kurimoto Y
    Brain Res Dev Brain Res; 1991 Aug; 61(2):285-9. PubMed ID: 1721564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efferent systems of the rabbit visual cortex: laminar distribution of the cells of origin, axonal conduction velocities, and identification of axonal branches.
    Swadlow HA; Weyand TG
    J Comp Neurol; 1981 Dec; 203(4):799-822. PubMed ID: 6173404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aberrant retino-retinal projection during optic nerve regeneration in the frog. I. Time course of formation and cells of origin.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):605-20. PubMed ID: 6970756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis.
    Zhao Y; Szaro BG
    J Comp Neurol; 1994 May; 343(1):158-72. PubMed ID: 7517961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projections from the central cervical nucleus to the cerebellar nuclei in the rat, studied by anterograde axonal tracing.
    Matsushita M; Yaginuma H
    J Comp Neurol; 1995 Mar; 353(2):234-46. PubMed ID: 7745133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.