These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3958320)

  • 21. Selective listening of concurrent auditory stimuli: an event-related potential study.
    Rao A; Zhang Y; Miller S
    Hear Res; 2010 Sep; 268(1-2):123-32. PubMed ID: 20595021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The intensity-difference limen for Gaussian-enveloped stimuli as a function of level: tones and broadband noise.
    Nizami L; Reimer JF; Jesteadt W
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2505-15. PubMed ID: 11757940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attention cueing aids auditory intensity resolution.
    Ward LM; Mori S
    J Acoust Soc Am; 1996 Sep; 100(3):1722-7. PubMed ID: 8817898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discrimination of narrow-band spectra. I: Spectral weights and pitch cues.
    Berg BG; Nguyen QT; Green DM
    J Acoust Soc Am; 1992 Oct; 92(4 Pt 1):1911-8. PubMed ID: 1401535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective attenuation of signals in noise under focused attention.
    Dai HP; Scharf B; Buus S
    J Acoust Soc Am; 1991 Jun; 89(6):2837-42. PubMed ID: 1918627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perceptual fusion and fragmentation of complex tones made inharmonic by applying different degrees of frequency shift and spectral stretch.
    Roberts B; Brunstrom JM
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2479-90. PubMed ID: 11757937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of stimulus cues in narrow-band tone-in-noise detection using sparse observer models.
    Schönfelder VH; Wichmann FA
    J Acoust Soc Am; 2013 Jul; 134(1):447-63. PubMed ID: 23862820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of time compression and expansion on the discrimination of tonal patterns.
    Sorkin RD; Montgomery DA
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):846-57. PubMed ID: 1939889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of level on the discrimination of harmonic and frequency-shifted complex tones at high frequencies.
    Moore BC; Sek A
    J Acoust Soc Am; 2011 May; 129(5):3206-12. PubMed ID: 21568422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal weighting of binaural information at low frequencies: Discrimination of dynamic interaural time and level differences.
    Diedesch AC; Stecker GC
    J Acoust Soc Am; 2015 Jul; 138(1):125-33. PubMed ID: 26233013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of single-channel cues in synchrony perception: the summed waveform.
    Richards VM
    J Acoust Soc Am; 1990 Aug; 88(2):786-95. PubMed ID: 2212304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement in informational masking.
    Cao X; Richards VM
    J Speech Lang Hear Res; 2012 Aug; 55(4):1135-47. PubMed ID: 22232413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection thresholds for sinusoidal frequency modulation.
    Demany L; Semal C
    J Acoust Soc Am; 1989 Mar; 85(3):1295-301. PubMed ID: 2708671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task.
    Vliegen J; Moore BC; Oxenham AJ
    J Acoust Soc Am; 1999 Aug; 106(2):938-45. PubMed ID: 10462799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Faciliation of Mandarin tone perception by visual speech in clear and degraded audio: implications for cochlear implants.
    Smith D; Burnham D
    J Acoust Soc Am; 2012 Feb; 131(2):1480-9. PubMed ID: 22352518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Training of cochlear implant users to improve pitch perception in the presence of competing place cues.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning to perceive pitch differences.
    Demany L; Semal C
    J Acoust Soc Am; 2002 Mar; 111(3):1377-88. PubMed ID: 11931315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of randomizing phase on the discrimination between amplitude-modulated and quasi-frequency-modulated tones.
    Tabuchi H; Borucki E; Berg BG
    Hear Res; 2012 Aug; 290(1-2):72-82. PubMed ID: 22609773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combination of binaural and harmonic masking release effects in the detection of a single component in complex tones.
    Klein-Hennig M; Dietz M; Hohmann V
    Hear Res; 2018 Mar; 359():23-31. PubMed ID: 29310976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase discrimination ability in Mongolian gerbils provides evidence for possible processing mechanism of mistuning detection.
    Klinge-Strahl A; Parnitzke T; Beutelmann R; Klump GM
    Adv Exp Med Biol; 2013; 787():399-407. PubMed ID: 23716246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.