These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 3958976)

  • 41. The axon terminal of goldfish retinal horizontal cells: a low membrane conductance measured in solitary preparations and its implication to the signal conduction from the soma.
    Yagi T; Kaneko A
    J Neurophysiol; 1988 Feb; 59(2):482-94. PubMed ID: 3351572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Passive cable properties of hippocampal CA3 pyramidal neurons.
    Johnston D
    Cell Mol Neurobiol; 1981 Mar; 1(1):41-55. PubMed ID: 7346164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry.
    Larkman AU; Major G; Stratford KJ; Jack JJ
    J Comp Neurol; 1992 Sep; 323(2):137-52. PubMed ID: 1401253
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Role of ACTH fragments in regulating electrogenesis and electrotonic synaptic interaction of pond snail neurons].
    Kamkin AG; Kiseleva IS; Kositskiĭ GI
    Fiziol Zh SSSR Im I M Sechenova; 1986 Jul; 72(7):908-20. PubMed ID: 3019788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Central generation of bursting in the feeding system of the snail, Lymnaea stagnalis.
    Benjamin PR; Rose RM
    J Exp Biol; 1979 Jun; 80():93-118. PubMed ID: 227979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spontaneous switching between ortho- and antidromic spiking as the normal mode of firing in the cerebral giant neurons of freely behaving Lymnaea stagnalis.
    Jansen RF; Pieneman AW; ter Maat A
    J Neurophysiol; 1996 Dec; 76(6):4206-9. PubMed ID: 8985917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trophic and contact conditions modulate synapse formation between identified neurons.
    Magoski NS; Bulloch AG
    J Neurophysiol; 1998 Jun; 79(6):3279-83. PubMed ID: 9636127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variation of gap junction sensitivity to H ions with time of day.
    Moreno AP; Ramon F; Spray DC
    Brain Res; 1987 Jan; 400(1):181-4. PubMed ID: 2434186
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The attenuation of passively propagating dendritic potentials in a motoneurone cable model.
    Redman SJ
    J Physiol; 1973 Nov; 234(3):637-64. PubMed ID: 4764433
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurotransmitter-induced modulation of an electrotonic synapse in the CNS of Hirudo medicinalis.
    Colombaioni L; Brunelli M
    Exp Biol; 1988; 47(3):139-44. PubMed ID: 2838317
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulatory role for the serotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. II. Photoinactivation.
    Yeoman MS; Kemenes G; Benjamin PR; Elliott CJ
    J Neurophysiol; 1994 Sep; 72(3):1372-82. PubMed ID: 7807218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining.
    Durand D; Carlen PL; Gurevich N; Ho A; Kunov H
    J Neurophysiol; 1983 Nov; 50(5):1080-97. PubMed ID: 6196465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preservation of motoneuron electrotonic characteristics during postembryonic growth.
    Hochner B; Spira ME
    J Neurosci; 1987 Jan; 7(1):261-70. PubMed ID: 3806197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel interneuron having hybrid modulatory-central pattern generator properties in the feeding system of the snail, Lymnaea stagnalis.
    Yeoman MS; Vehovszky A; Kemenes G; Elliott CJ; Benjamin PR
    J Neurophysiol; 1995 Jan; 73(1):112-24. PubMed ID: 7714557
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Location of membrane conductance changes by analysis of the input impedance of neurons. II. Implementation.
    Fox SE; Chan CY
    J Neurophysiol; 1985 Dec; 54(6):1594-606. PubMed ID: 4087049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings.
    Devor A; Yarom Y
    J Neurophysiol; 2002 Jun; 87(6):3048-58. PubMed ID: 12037207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electric current flow in a two-cell preparation from Chironomus salivary glands.
    Metzger P; Weingart R
    J Physiol; 1984 Jan; 346():599-619. PubMed ID: 6699787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimating the electrotonic structure of neurons with compartmental models.
    Holmes WR; Rall W
    J Neurophysiol; 1992 Oct; 68(4):1438-52. PubMed ID: 1432091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photoinactivation of neurones axonally filled with the fluorescent dye 5(6)-carboxyfluorescein in the pond snail, Lymnaea stagnalis.
    Kemenes G; Daykin K; Elliott CJ
    J Neurosci Methods; 1991 Oct; 39(3):207-16. PubMed ID: 1787741
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dye and electrotonic coupling between cultured hippocampal neurons.
    O'Beirne M; Bulloch AG; MacVicar BA
    Neurosci Lett; 1987 Aug; 78(3):265-70. PubMed ID: 3627562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.