BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 3958988)

  • 1. Electrophysiological properties of neonatal rat motoneurones studied in vitro.
    Fulton BP; Walton K
    J Physiol; 1986 Jan; 370():651-78. PubMed ID: 3958988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic physiology of spinal motoneurones of normal and spastic mice: an in vitro study.
    Biscoe TJ; Duchen MR
    J Physiol; 1986 Oct; 379():275-92. PubMed ID: 3559995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro studies of prolonged synaptic depression in the neonatal rat spinal cord.
    Lev-Tov A; Pinco M
    J Physiol; 1992 Feb; 447():149-69. PubMed ID: 1593445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ia afferent excitation of motoneurones in the in vitro new-born rat spinal cord is selectively antagonized by kynurenate.
    Jahr CE; Yoshioka K
    J Physiol; 1986 Jan; 370():515-30. PubMed ID: 2870179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic activities of spinal motoneurones in pigs and rabbits enhanced through chronic stimulation of a dorsal root.
    Fujita Y; Harada H; Kitamura T; Minami S; Sato T
    J Physiol; 1987 Feb; 383():171-90. PubMed ID: 3656123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of post-synaptic excitation in amphibian motoneurones.
    Shapovalov AI; Shiriaev BI; Velumian AA
    J Physiol; 1978 Jun; 279():437-55. PubMed ID: 209178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscarinic excitatory and inhibitory mechanisms involved in afferent fibre-evoked depolarization of motoneurones in the neonatal rat spinal cord.
    Kurihara T; Suzuki H; Yanagisawa M; Yoshioka K
    Br J Pharmacol; 1993 Sep; 110(1):61-70. PubMed ID: 7693289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Firing of spinal motoneurones due to electrical interaction in the rat: an in vitro study.
    Arasaki K; Kudo N; Nakanishi T
    Exp Brain Res; 1984; 54(3):437-45. PubMed ID: 6723863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of some divalent cations on synaptic transmission in frog spinal neurones.
    Alvarez-Leefmans FJ; De Santis A; Miledi R
    J Physiol; 1979 Sep; 294():387-406. PubMed ID: 229215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motoneurone activity in an isolated spinal cord preparation from the adult mouse.
    Fulton BP
    Neurosci Lett; 1986 Nov; 71(2):175-80. PubMed ID: 3024074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibers in the neonatal rat spinal cord in vitro.
    Thompson SW; Woolf CJ; Sivilotti LG
    J Neurophysiol; 1993 Jun; 69(6):2116-28. PubMed ID: 8350135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro.
    Bennett DJ; Li Y; Siu M
    J Neurophysiol; 2001 Oct; 86(4):1955-71. PubMed ID: 11600653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of tetanus toxin on the excitatory and the inhibitory post-synaptic potentials in the cat motoneurone.
    Kanda K; Takano K
    J Physiol; 1983 Feb; 335():319-33. PubMed ID: 6308220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-caliber afferents is a predictor of action potential windup in rat spinal neurons in vitro.
    Sivilotti LG; Thompson SW; Woolf CJ
    J Neurophysiol; 1993 May; 69(5):1621-31. PubMed ID: 8389833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The responses recorded in vitro of deep dorsal horn neurons to direct and orthodromic stimulation in the young rat spinal cord.
    King AE; Thompson SW; Urban L; Woolf CJ
    Neuroscience; 1988 Oct; 27(1):231-42. PubMed ID: 3200441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones.
    Gustafsson B; McCrea D
    J Physiol; 1984 Feb; 347():431-51. PubMed ID: 6707962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the monosynaptic stretch reflex in the rat: an in vitro study.
    Kudo N; Yamada T
    J Physiol; 1985 Dec; 369():127-44. PubMed ID: 4093877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual mode of junctional transmission at synapses between single primary afferent fibres and motoneurones in the amphibian.
    Shapovalov AI; Shiriaev BI
    J Physiol; 1980 Sep; 306():1-15. PubMed ID: 6257893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal changes in motoneurone electrotonic coupling studied in the in vitro rat lumbar spinal cord.
    Walton KD; Navarrete R
    J Physiol; 1991 Feb; 433():283-305. PubMed ID: 1668753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.