These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 39593)

  • 1. Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis.
    Rhoden V; Goldin SM
    Biochemistry; 1979 Sep; 18(19):4173-6. PubMed ID: 39593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single bilayer vesicles prepared without sonication. Physico-chemical properties.
    Brunner J; Skrabal P; Hauser H
    Biochim Biophys Acta; 1976 Dec; 455(2):322-31. PubMed ID: 1033769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid transmembrane movement of phosphatidylcholine in small unilamellar lipid vesicles formed by detergent removal.
    Kramer RM; Hasselbach HJ; Semenza G
    Biochim Biophys Acta; 1981 Apr; 643(1):233-42. PubMed ID: 7236690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exchangeability and rate of flip-flop of phosphatidylcholine in large unilamellar vesicles, cholate dialysis vesicles, and cytochrome oxidase vesicles.
    Dicorleto PE; Zilversmit DB
    Biochim Biophys Acta; 1979 Mar; 552(1):114-9. PubMed ID: 219890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of phosphatidylethanolamine and phosphatidylcholine vesicles produced by treating cholate-phospholipid micelles with cholestyramine.
    Shi SP; Chang CC; Gould GW; Chang TY
    Biochim Biophys Acta; 1989 Jul; 982(2):187-95. PubMed ID: 2752023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate.
    Schubert R; Beyer K; Wolburg H; Schmidt KH
    Biochemistry; 1986 Sep; 25(18):5263-9. PubMed ID: 2429697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of calcium on kinetic and structural aspects of dilution-induced micellar to lamellar phase transformation in phosphatidylcholine-cholate mixtures.
    Almog S; Lichtenberg D
    Biochemistry; 1988 Feb; 27(3):873-80. PubMed ID: 3365368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The size dependence of cholate-dialyzed vesicles on phosphatidylcholine concentration.
    Tauskela JS; Akler M; Thompson M
    Anal Biochem; 1992 Mar; 201(2):282-7. PubMed ID: 1632515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles.
    Almog S; Kushnir T; Nir S; Lichtenberg D
    Biochemistry; 1986 May; 25(9):2597-605. PubMed ID: 3718967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural studies on phophatidylcholine-cholesterol mixed vesicles.
    Newman GC; Huang C
    Biochemistry; 1975 Jul; 14(15):3363-70. PubMed ID: 1170890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of hormone-sensitive lipase into phosphatidylcholine vesicles.
    Holm C; Fredrikson G; Sundler R; Belfrage P
    Lipids; 1990 May; 25(5):254-9. PubMed ID: 1693743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid vesicle formation using nonionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability.
    Ueno M; Tanford C; Reynolds JA
    Biochemistry; 1984 Jun; 23(13):3070-6. PubMed ID: 6466632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of water-soluble polymers on the state of aggregation, vesicle size, and phase transformations in mixtures of phosphatidylcholine and sodium cholate.
    Meyuhas D; Lichtenberg D
    Biophys J; 1996 Nov; 71(5):2613-22. PubMed ID: 8913599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles.
    Zumbuehl O; Weder HG
    Biochim Biophys Acta; 1981 Jan; 640(1):252-62. PubMed ID: 7194112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase behaviour of mixtures of lipid X with phosphatidylcholine and phosphatidylethanolamine.
    Lipka G; Hauser H
    Biochim Biophys Acta; 1989 Feb; 979(2):239-50. PubMed ID: 2923879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of unilamellar vesicles from cholate-phospholipid micelle treated with cholestyramine.
    Ventimiglia JB; Levesque MC; Chang TY
    Anal Biochem; 1986 Sep; 157(2):323-30. PubMed ID: 3777436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clathrin-induced pH-dependent fusion of phosphatidylcholine vesicles.
    Blumenthal R; Henkart M; Steer CJ
    J Biol Chem; 1983 Mar; 258(5):3409-15. PubMed ID: 6826567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology of egg phosphatidylcholine-cholesterole single-bilayer vesicles, studied by freeze-etch electron microscopy.
    Forge A; Knowles PF; Marsh D
    J Membr Biol; 1978 Jul; 41(3):249-63. PubMed ID: 671525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures.
    Chong PL; Tang D; Sugar IP
    Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.