These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3959610)

  • 1. When are actively balanced biphasic ('Lilly') stimulating pulses necessary in a neurological prosthesis? II. pH changes; noxious products; electrode corrosion; discussion.
    Donaldson ND; Donaldson PE
    Med Biol Eng Comput; 1986 Jan; 24(1):50-6. PubMed ID: 3959610
    [No Abstract]   [Full Text] [Related]  

  • 2. When are actively balanced biphasic ('Lilly') stimulating pulses necessary in a neurological prosthesis? I. Historical background; Pt resting potential; Q studies.
    Donaldson ND; Donaldson PE
    Med Biol Eng Comput; 1986 Jan; 24(1):41-9. PubMed ID: 3959609
    [No Abstract]   [Full Text] [Related]  

  • 3. Electrical stimulation with Pt electrodes: Trace analysis for dissolved platinum and other dissolved electrochemical products.
    Brummer SB; McHardy J; Turner MJ
    Brain Behav Evol; 1977 Feb; 14(1-2):10-22. PubMed ID: 13907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal stimulus profiles for neuroprosthetic devices: monophasic versus biphasic stimulation.
    Tahayori B; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5978-81. PubMed ID: 24111101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro model for evaluating neural stimulating electrodes.
    Johnson PF; Hench LL
    J Biomed Mater Res; 1976 Nov; 10(6):907-28. PubMed ID: 993227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro analysis of metal electrodes for use in the neural environment.
    Johnson PF; Hench LL
    Brain Behav Evol; 1977 Feb; 14(1-2):23-45. PubMed ID: 837211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of platinum stimulating electrodes mapped on the limit-voltage plane. Part 2. Corrosion in vitro.
    Donaldson NN; Donaldson PE
    Med Biol Eng Comput; 1986 Jul; 24(4):431-8. PubMed ID: 3491939
    [No Abstract]   [Full Text] [Related]  

  • 8. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-balanced, biphasic pulses for 0.566  ⩽  k  ⩽  2.3 in rat subcutaneous tissues.
    Kumsa DW; Bhadra N; Hudak EM; Mortimer JT
    J Neural Eng; 2017 Oct; 14(5):056003. PubMed ID: 28813367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-imbalanced, biphasic pulses for 0.566  ⩽  k  ⩽  2.3 in rat subcutaneous tissues.
    Kumsa DW; Hudak EM; Bhadra N; Mortimer JT
    J Neural Eng; 2019 Apr; 16(2):026018. PubMed ID: 30560809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic prosthesis for oxygenation of ischemic tissue.
    Greenbaum E; Humayun MS; Sanders CA; Close D; O'Neill HM; Evans BR
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):528-31. PubMed ID: 19304479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical properties of platinum, glassy carbon, and pyrographite as stimulating electrodes.
    Mund K; Richter G; Weidlich E; Fahlström U
    Pacing Clin Electrophysiol; 1986 Nov; 9(6):1225-9. PubMed ID: 2432538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic electrical stimulation of the auditory nerve using high surface area (HiQ) platinum electrodes.
    Tykocinski M; Duan Y; Tabor B; Cowan RS
    Hear Res; 2001 Sep; 159(1-2):53-68. PubMed ID: 11520634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning electron microscopy of chronically stimulated platinum intracochlear electrodes.
    Shepherd RK; Murray MT; Houghton ME; Clark GM
    Biomaterials; 1985 Jul; 6(4):237-42. PubMed ID: 3840392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters.
    Mailley S; Hyland M; Mailley P; McLaughlin JA; McAdams ET
    Bioelectrochemistry; 2004 Jun; 63(1-2):359-64. PubMed ID: 15110303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of oxygen reduction reactions at neurostimulation electrodes.
    Ehlich J; Migliaccio L; Sahalianov I; Nikić M; Brodský J; Gablech I; Vu XT; Ingebrandt S; Głowacki ED
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688124
    [No Abstract]   [Full Text] [Related]  

  • 16. Surface examination of electrodes of removed implants.
    Rozman J; Pihlar B; Strojnik P
    Scand J Rehabil Med Suppl; 1988; 17():99-103. PubMed ID: 3261042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The visual cortex during chronic stimulation.
    Harrison JM; Dawson WW
    Brain Behav Evol; 1977 Feb; 14(1-2):87-102. PubMed ID: 837213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation.
    Hudak EM; Kumsa DW; Martin HB; Mortimer JT
    J Neural Eng; 2017 Aug; 14(4):046012. PubMed ID: 28345534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical histopathology following stimulation with metallic and carbon electrodes.
    Bernstein JJ; Johnson PF; Hench LL; Hunter G; Dawson WW
    Brain Behav Evol; 1977 Feb; 14(1-2):126-57. PubMed ID: 319878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.