These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39601)

  • 1. The effect of intracellular pH on the rate of hexose uptake in Chlorella.
    Komor E; Schwab WG; Tanner W
    Biochim Biophys Acta; 1979 Aug; 555(3):524-30. PubMed ID: 39601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose uptake by Chlorella vulgaris: the coupling of protonmotive potential difference to glucose transport.
    Komor E
    Biochem Soc Trans; 1980 Dec; 8(6):681-3. PubMed ID: 7461251
    [No Abstract]   [Full Text] [Related]  

  • 3. A possible mechanistic role of the membrane potential in proton-sugar cotransport of Chlorella.
    Schwab WG; Komor E
    FEBS Lett; 1978 Mar; 87(1):157-60. PubMed ID: 24552
    [No Abstract]   [Full Text] [Related]  

  • 4. Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Evidence for sugar-dependent proton uptake without concomitant sugar uptake by the proton-sugar symport system.
    Grüneberg A; Komor E
    Biochim Biophys Acta; 1976 Sep; 448(1):133-42. PubMed ID: 9152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The determination of the membrane ptoential of Chlorella vulgaris. Evidence for electrogenic sugar transport.
    Komor E; Tanner W
    Eur J Biochem; 1976 Nov; 70(1):197-204. PubMed ID: 12943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid release of free fatty acids during cell breakage and their effects on a sugar-proton cotransport system in Chlorella vulgaris.
    Decker M; Tanner W
    FEBS Lett; 1975 Dec; 60(2):346-8. PubMed ID: 1227976
    [No Abstract]   [Full Text] [Related]  

  • 7. The influence of uncouplers on facilitated diffusion of sorbose in Saccharomyces cerevisiae.
    Van den Broek PJ; Haasnoot CJ; Van Leeuwen CC; Van Steveninck J
    Biochim Biophys Acta; 1982 Aug; 689(3):429-36. PubMed ID: 6751390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system.
    Komor E; Tanner W
    J Gen Physiol; 1974 Nov; 64(5):568-81. PubMed ID: 4443792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A confirmation of the proposed model for the hexose uptake system of Chlorella vulgaris. Anaerobic studies in the light and in the dark.
    Komor E; Loos E; Tanner W
    J Membr Biol; 1973; 12(1):89-99. PubMed ID: 4781067
    [No Abstract]   [Full Text] [Related]  

  • 10. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent control of selected insulin-sensitive cell membrane and intracellular functions - the linkage of cell membrane and intracellular events controlled by insulin. L. The influence of pH on insulin binding, membrane hexose transport and glycogen synthase activation.
    Kikuchi K; Larner J
    Mol Cell Biochem; 1981 Jul; 37(2):109-15. PubMed ID: 6792501
    [No Abstract]   [Full Text] [Related]  

  • 12. Transport kinetics of 6-deoxy-D-glucose in Candida parapsilosis.
    Kotyk A; Michaljanicová D
    Folia Microbiol (Praha); 1978; 23(1):18-26. PubMed ID: 23984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexose transport and phosphorylation by Novikoff rat hepatoma cells as function of extracellular pH.
    Wohlhueter RM; Plagemann PG
    J Biol Chem; 1981 Jan; 256(2):869-75. PubMed ID: 7451478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active transport of L-sorbose and 2-deoxy-D-galactose in Saccharomyces fragilis.
    Jaspers HT; van Steveninck J
    Biochim Biophys Acta; 1977 Sep; 469(3):292-300. PubMed ID: 20143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active transport of charged substrates by a proton/sugar co-transport system. Amino-sugar uptake in the yeast Rhodotorula gracilis.
    Niemietz C; Hauer R; Höfer M
    Biochem J; 1981 Feb; 194(2):433-41. PubMed ID: 6272730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexose transport in human myoblasts.
    Mesmer OT; Lo TC
    Biochem J; 1989 Aug; 262(1):15-24. PubMed ID: 2818559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose transport in Achlya: characterization and possible regulatory aspects.
    Goh SH; LéJohn HB
    Can J Biochem; 1978 Apr; 56(4):246-56. PubMed ID: 647446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of 2-deoxy-D-glucose uptake in Saccharomyces fragilis.
    Van den Broek PJ; Van Steveninck J
    Biochim Biophys Acta; 1981 Dec; 649(2):305-9. PubMed ID: 7317400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells.
    Buckler KJ; Vaughan-Jones RD
    J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):819-33. PubMed ID: 9824720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protonmotive force driven 6-deoxyglucose uptake by the oral pathogen, Streptococcus mutans Ingbritt.
    Keevil CW; McDermid AS; Marsh PD; Ellwood DC
    Arch Microbiol; 1986 Nov; 146(2):118-24. PubMed ID: 3800553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.