These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3962007)

  • 1. Absorption of longitudinal and shear waves and generation of heat in soft tissues.
    Filipczyński L
    Ultrasound Med Biol; 1986 Mar; 12(3):223-8. PubMed ID: 3962007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the interference between shear and longitudinal waves under high intensity focused ultrasound propagation in bone.
    Modena D; Baragona M; Bošnački D; Breuer BJT; Elevelt A; Maessen RTH; Hilbers PAJ; Ten Eikelder HMM
    Phys Med Biol; 2018 Dec; 63(23):235024. PubMed ID: 30511661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced ultrasound transmission through the human skull using shear mode conversion.
    Clement GT; White PJ; Hynynen K
    J Acoust Soc Am; 2004 Mar; 115(3):1356-64. PubMed ID: 15058357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On heating of tissues by shear waves generated by ultrasound.
    Ostrovsky LA
    J Acoust Soc Am; 2018 Nov; 144(5):2962. PubMed ID: 30522273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force.
    Gennisson JL; Rénier M; Catheline S; Barrière C; Bercoff J; Tanter M; Fink M
    J Acoust Soc Am; 2007 Dec; 122(6):3211-9. PubMed ID: 18247733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic shear wave properties of soft tissues and tissuelike materials.
    Madsen EL; Sathoff HJ; Zagzebski JA
    J Acoust Soc Am; 1983 Nov; 74(5):1346-55. PubMed ID: 6643846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical constraints on the non-dimensional absorption coefficients of compressional and shear waves for viscoelastic cylinders.
    Mitri FG; Fellah ZE
    Ultrasonics; 2017 Feb; 74():233-240. PubMed ID: 27863341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound-biophysics mechanisms.
    O'Brien WD
    Prog Biophys Mol Biol; 2007; 93(1-3):212-55. PubMed ID: 16934858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic method to characterize shear wave propagation in micellar fluids.
    Amador C; Otilio BL; Kinnick RR; Urban MW
    J Acoust Soc Am; 2016 Sep; 140(3):1719. PubMed ID: 27914388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonically produced heat in a fluid with bulk viscosity and shear viscosity.
    Nyborg WL
    J Acoust Soc Am; 1986 Oct; 80(4):1133-9. PubMed ID: 3771929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal effects generated by high-intensity focused ultrasound beams at normal incidence to a bone surface.
    Nell DM; Myers MR
    J Acoust Soc Am; 2010 Jan; 127(1):549-59. PubMed ID: 20059000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion of interface waves in sediments with power-law shear speed profiles. I. Exact and approximate analytical results.
    Godin OA; Chapman DM
    J Acoust Soc Am; 2001 Oct; 110(4):1890-907. PubMed ID: 11681370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube.
    Atabek HB
    Biophys J; 1968 May; 8(5):626-49. PubMed ID: 5699800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of shear waves generated by a modulated finite amplitude radiation force in a viscoelastic medium.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):575-88. PubMed ID: 19411216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of viscosity on the shear strain remotely induced by focused ultrasound in viscoelastic media.
    Barannik EA; Girnyk SA; Tovstiak VV; Marusenko AI; Volokhov VA; Sarvazyan AP; Emelianov SY
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):2358-64. PubMed ID: 15139649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of mode conversion on ultrasonic heating at tissue interfaces.
    Haken BA; Frizzell LA; Carstensen EL
    J Ultrasound Med; 1992 Aug; 11(8):393-405. PubMed ID: 1495131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull.
    Hayner M; Hynynen K
    J Acoust Soc Am; 2001 Dec; 110(6):3319-30. PubMed ID: 11785832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast compressional wave attenuation and dispersion due to conversion scattering into slow shear waves in randomly heterogeneous porous media.
    Müller TM; Sahay PN
    J Acoust Soc Am; 2011 May; 129(5):2785-96. PubMed ID: 21568383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase and amplitude fluctuations in the propagation of acoustic waves in lossless inhomogeneous continua with velocity, density and bulk modulus variations.
    Chivers RC
    Ultrasound Med Biol; 1978; 4(4):353-61. PubMed ID: 753009
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.