BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3963175)

  • 1. Role of monosaccharide transporter in vitamin C uptake by placental membrane vesicles.
    Ingermann RL; Stankova L; Bigley RH
    Am J Physiol; 1986 Apr; 250(4 Pt 1):C637-41. PubMed ID: 3963175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of monosaccharide on dehydroascorbic acid uptake by placental membrane vesicles.
    Ingermann RL; Stankova L; Bigley RH; Bissonnette JM
    J Clin Endocrinol Metab; 1988 Aug; 67(2):389-94. PubMed ID: 3392164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transport of vitamin C in the isolated human near-term placenta.
    Rybakowski C; Mohar B; Wohlers S; Leichtweiss HP; Schröder H
    Eur J Obstet Gynecol Reprod Biol; 1995 Sep; 62(1):107-14. PubMed ID: 7493690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.
    Vera JC; Rivas CI; Zhang RH; Farber CM; Golde DW
    Blood; 1994 Sep; 84(5):1628-34. PubMed ID: 8068952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid.
    Vera JC; Rivas CI; Velásquez FV; Zhang RH; Concha II; Golde DW
    J Biol Chem; 1995 Oct; 270(40):23706-12. PubMed ID: 7559541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin C transport in oxidized form across the rat blood-retinal barrier.
    Hosoya K; Minamizono A; Katayama K; Terasaki T; Tomi M
    Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1232-9. PubMed ID: 15037592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between glucose and dehydroascorbate transport in human neutrophils and fibroblasts.
    Bigley R; Wirth M; Layman D; Riddle M; Stankova L
    Diabetes; 1983 Jun; 32(6):545-8. PubMed ID: 6354783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose transport across the basal plasma membrane of human placental syncytiotrophoblast.
    Johnson LW; Smith CH
    Biochim Biophys Acta; 1985 Apr; 815(1):44-50. PubMed ID: 3986201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C.
    Upston JM; Karjalainen A; Bygrave FL; Stocker R
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):49-56. PubMed ID: 10432299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct mechanisms of transport of ascorbic acid and dehydroascorbic acid in intestinal epithelial cells (IEC-6).
    Fujita I; Akagi Y; Hirano J; Nakanishi T; Itoh N; Muto N; Tanaka K
    Res Commun Mol Pathol Pharmacol; 2000; 107(3-4):219-31. PubMed ID: 11484876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human erythrocytes transport dehydroascorbic acid and sugars using the same transporter complex.
    Sage JM; Carruthers A
    Am J Physiol Cell Physiol; 2014 May; 306(10):C910-7. PubMed ID: 24598365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint.
    McNulty AL; Stabler TV; Vail TP; McDaniel GE; Kraus VB
    Arthritis Rheum; 2005 Sep; 52(9):2676-85. PubMed ID: 16142743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP.
    Siushansian R; Tao L; Dixon SJ; Wilson JX
    J Neurochem; 1997 Jun; 68(6):2378-85. PubMed ID: 9166731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A; Caprile T; Castro M; Salazar K; García Mde L; Reinicke K; Rodríguez F; Vera JC; Millán C; Ulloa V; Low M; Martínez F; Nualart F
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):146-56. PubMed ID: 15578707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K; Nakamura G; Akanuma S; Tomi M; Tachikawa M
    Neurochem Int; 2008 Jun; 52(7):1351-7. PubMed ID: 18353508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of cyanide on vitamin C uptake by human polymorphonuclear leukocytes.
    Stankova L; Bigley R; Ingermann RL
    Gen Pharmacol; 1991; 22(5):903-5. PubMed ID: 1761196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions among ascorbate, dehydroascorbate and glucose transport in cultured hippocampal neurons and glia.
    Patel M; McIntosh L; Bliss T; Ho D; Sapolsky R
    Brain Res; 2001 Oct; 916(1-2):127-35. PubMed ID: 11597599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric reconstitution of the glucose transporter from Ehrlich ascites cell plasma membrane: role of alkali cations.
    McCormick JI; Johnstone RM
    Arch Biochem Biophys; 1986 Jul; 248(1):379-89. PubMed ID: 3729423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.