These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 3963186)
1. Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle. Hood DA; Gorski J; Terjung RL Am J Physiol; 1986 Apr; 250(4 Pt 1):E449-56. PubMed ID: 3963186 [TBL] [Abstract][Full Text] [Related]
2. Differences between VO2 maxima of twitch and tetanic contractions are related to blood flow. Brechue WF; Barclay JK; O'Drobinak DM; Stainsby WN J Appl Physiol (1985); 1991 Jul; 71(1):131-5. PubMed ID: 1917734 [TBL] [Abstract][Full Text] [Related]
3. Blood flow to different rat skeletal muscle fiber type sections during isometric contractions in situ. Terjung RL; Engbretson BM Med Sci Sports Exerc; 1988 Oct; 20(5 Suppl):S124-30. PubMed ID: 3193871 [TBL] [Abstract][Full Text] [Related]
4. Lactic acid output of cat gastrocnemius-plantaris during repetitive twitch contractions. Stainsby WN; Eitzman PD Med Sci Sports Exerc; 1986 Dec; 18(6):668-73. PubMed ID: 3097452 [TBL] [Abstract][Full Text] [Related]
5. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions. Spriet LL Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938 [TBL] [Abstract][Full Text] [Related]
6. Blood flow to different skeletal muscle fiber types during contraction. Mackie BG; Terjung RL Am J Physiol; 1983 Aug; 245(2):H265-75. PubMed ID: 6881361 [TBL] [Abstract][Full Text] [Related]
7. The effects of PGC-1α on control of microvascular P(O2) kinetics following onset of muscle contractions. Kano Y; Miura S; Eshima H; Ezaki O; Poole DC J Appl Physiol (1985); 2014 Jul; 117(2):163-70. PubMed ID: 24833782 [TBL] [Abstract][Full Text] [Related]
9. Energy cost of submaximal isometric concentrations in cat fast and slow twitch muscles. Sawka MN; Petrofsky JS; Phillips CA Pflugers Arch; 1981 May; 390(2):164-8. PubMed ID: 7195564 [TBL] [Abstract][Full Text] [Related]
10. Autologous pump-perfused rat hind limb preparation for investigating muscle function and metabolism in vivo. Peoples GE; Hoy AJ; Henry R; McLennan PL Microcirculation; 2013 Aug; 20(6):511-23. PubMed ID: 23413809 [TBL] [Abstract][Full Text] [Related]
11. Influence of stimulation parameters on the release of adenosine, lactate and CO2 from contracting dog gracilis muscle. Achike FI; Ballard HJ J Physiol; 1993 Apr; 463():107-21. PubMed ID: 8246177 [TBL] [Abstract][Full Text] [Related]
12. V(O2) max is unaffected by altering the temporal pattern of stimulation frequency in rat hindlimb in situ. Hepple RT; Krause DJ; Hagen JL; Jackson CC J Appl Physiol (1985); 2003 Aug; 95(2):705-11. PubMed ID: 12704088 [TBL] [Abstract][Full Text] [Related]
13. Functional and metabolic consequences of skeletal muscle remodeling in hypothyroidism. McAllister RM; Ogilvie RW; Terjung RL Am J Physiol; 1991 Feb; 260(2 Pt 1):E272-9. PubMed ID: 1996631 [TBL] [Abstract][Full Text] [Related]
14. Microvascular hematocrit and permeability-surface area product in contracting canine skeletal muscle in situ. Frisbee JC; Barclay JK Microvasc Res; 1998 Mar; 55(2):153-64. PubMed ID: 9521890 [TBL] [Abstract][Full Text] [Related]
15. The role of frequency in the effects of long-term intermittent stimulation of denervated slow-twitch muscle in the rat. Al-Amood WS; Lewis DM J Physiol; 1987 Nov; 392():377-95. PubMed ID: 3446785 [TBL] [Abstract][Full Text] [Related]
16. Faster adjustment of O2 delivery does not affect V(O2) on-kinetics in isolated in situ canine muscle. Grassi B; Gladden LB; Samaja M; Stary CM; Hogan MC J Appl Physiol (1985); 1998 Oct; 85(4):1394-403. PubMed ID: 9760333 [TBL] [Abstract][Full Text] [Related]