BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 3963192)

  • 21. Glucose-independent transport of dehydroascorbic acid in human erythrocytes.
    Bianchi J; Rose RC
    Proc Soc Exp Biol Med; 1986 Mar; 181(3):333-7. PubMed ID: 3945643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological role of dehydroascorbic acid.
    Banerjee S
    Indian J Physiol Pharmacol; 1977; 21(2):85-93. PubMed ID: 407155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid.
    Vera JC; Rivas CI; Velásquez FV; Zhang RH; Concha II; Golde DW
    J Biol Chem; 1995 Oct; 270(40):23706-12. PubMed ID: 7559541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The characteristic changes of amino acid transport during development in brush border membrane vesicles of the guinea pig ileum.
    Hayashi K; Kawasaki T
    Biochim Biophys Acta; 1982 Sep; 691(1):83-90. PubMed ID: 7138856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active transport of L-ascorbic acid in the human ileum.
    Stevenson NR
    Gastroenterology; 1974 Nov; 67(5):952-6. PubMed ID: 4473393
    [No Abstract]   [Full Text] [Related]  

  • 26. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.
    Vera JC; Rivas CI; Zhang RH; Farber CM; Golde DW
    Blood; 1994 Sep; 84(5):1628-34. PubMed ID: 8068952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of mammalian hemoglobins with dehydroascorbic acid.
    Deb S; Som S; Basu S; Chatterjee IB
    Experientia; 1981; 37(9):940-1. PubMed ID: 7297654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of neutral amino acid transport systems in the small intestine: a study of brush border membrane vesicles.
    Hayashi K; Dojo S; Nakashima K; Nishio E; Kurushima H; Saeki M; Amioka H; Hirata Y; Ohtani H; Hiraoka M
    Gastroenterol Jpn; 1991 Jun; 26(3):287-93. PubMed ID: 1909674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ascorbic acid and dehydroascorbic acid in breast milk of Thai mothers.
    Chatranon W; Siddhikol C; Chavalittamrong B
    J Med Assoc Thai; 1979 Jun; 62(6):315-8. PubMed ID: 458276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport of ascorbic acid and dehydroascorbic acid by pancreatic islet cells from neonatal rats.
    Zhou A; Nielsen JH; Farver O; Thorn NA
    Biochem J; 1991 Mar; 274 ( Pt 3)(Pt 3):739-44. PubMed ID: 2012602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of ascorbic acid.
    Hornig D
    World Rev Nutr Diet; 1975; 23():225-58. PubMed ID: 1216874
    [No Abstract]   [Full Text] [Related]  

  • 32. Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C.
    Upston JM; Karjalainen A; Bygrave FL; Stocker R
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):49-56. PubMed ID: 10432299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.
    Frikke-Schmidt H; Tveden-Nyborg P; Lykkesfeldt J
    Redox Biol; 2016 Apr; 7():8-13. PubMed ID: 26609560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A; Caprile T; Castro M; Salazar K; García Mde L; Reinicke K; Rodríguez F; Vera JC; Millán C; Ulloa V; Low M; Martínez F; Nualart F
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):146-56. PubMed ID: 15578707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells.
    Azzolini C; Fiorani M; Guidarelli A; Cantoni O
    Br J Nutr; 2012 Mar; 107(5):691-6. PubMed ID: 21794197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport mechanisms for vitamin C in the JAR human placental choriocarcinoma cell line.
    Prasad PD; Huang W; Wang H; Leibach FH; Ganapathy V
    Biochim Biophys Acta; 1998 Feb; 1369(1):141-51. PubMed ID: 9528682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular accumulation of ascorbic acid is inhibited by flavonoids via blocking of dehydroascorbic acid and ascorbic acid uptakes in HL-60, U937 and Jurkat cells.
    Park JB; Levine M
    J Nutr; 2000 May; 130(5):1297-302. PubMed ID: 10801933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acid transport system of the guinea pig small intestine is injured by hydroxyl radicals.
    Hayashi K; Amioka H; Kurokawa JI; Kuga Y; Nomura SI; Ohkura Y; Ohtani H; Kajiyama G
    Scand J Gastroenterol; 1993 Mar; 28(3):261-6. PubMed ID: 8383354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysine transport in the guinea-pig small intestine.
    Munck BG
    Biochim Biophys Acta; 1984 Feb; 770(1):29-34. PubMed ID: 6421322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct mechanisms of transport of ascorbic acid and dehydroascorbic acid in intestinal epithelial cells (IEC-6).
    Fujita I; Akagi Y; Hirano J; Nakanishi T; Itoh N; Muto N; Tanaka K
    Res Commun Mol Pathol Pharmacol; 2000; 107(3-4):219-31. PubMed ID: 11484876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.