BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 3963816)

  • 1. Interaction of oxamate with the gluconeogenic pathway in rat liver.
    Martin-Requero A; Ayuso MS; Parrilla R
    Arch Biochem Biophys; 1986 Apr; 246(1):114-27. PubMed ID: 3963816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate-limiting steps for hepatic gluconeogenesis. Mechanism of oxamate inhibition of mitochondrial pyruvate metabolism.
    Martin-Requero A; Ayuso MS; Parrilla R
    J Biol Chem; 1986 Oct; 261(30):13973-8. PubMed ID: 3771515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action.
    Sistare FD; Haynes RC
    J Biol Chem; 1985 Oct; 260(23):12748-53. PubMed ID: 4044607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal changes in gluconeogenesis and ureagenesis induced by fatty acid oxidation.
    Martín-Requero A; Ciprés G; Rivas T; Ayuso MS; Parrilla R
    Metabolism; 1993 Dec; 42(12):1573-82. PubMed ID: 8246772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation by glucose of gluconeogenesis in hepatocytes isolated from starved rats.
    Rigoulet M; Leverve XM; Plomp PJ; Meijer AJ
    Biochem J; 1987 Aug; 245(3):661-8. PubMed ID: 3663184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of endogenous fatty acids in the control of hepatic gluconeogenesis.
    González-Manchón C; Martín-Requero A; Ayuso MS; Parrilla R
    Arch Biochem Biophys; 1992 Jan; 292(1):95-101. PubMed ID: 1727653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of fatty acid control of gluconeogenesis and PDH complex flux in adrenalectomized rats.
    Ciprés G; Urcelay E; Butta N; Ayuso MS; Parrilla R; Martín-Requero A
    Am J Physiol; 1994 Oct; 267(4 Pt 1):E528-36. PubMed ID: 7943301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of hepatic gluconeogenesis: role of fatty acid oxidation.
    González-Manchón C; Ayuso MS; Parrilla R
    Arch Biochem Biophys; 1989 May; 271(1):1-9. PubMed ID: 2712567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of sodium 2-5-4 chlorophenylpentyloxirane-2-carboxylate (POCA) inhibition of hepatic gluconeogenesis.
    González-Manchón C; Ayuso MS; Parrilla R
    Biochem Pharmacol; 1990 Oct; 40(8):1695-9. PubMed ID: 2242006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes.
    Cornell NW; Lund P; Krebs HA
    Biochem J; 1974 Aug; 142(2):327-37. PubMed ID: 4155292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stimulation of hepatic gluconeogenesis by acetoacetate precursors. A role for the monocarboxylate translocator.
    Patel TB; Barron LL; Olson MS
    J Biol Chem; 1984 Jun; 259(12):7525-31. PubMed ID: 6736017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of hexose 6-phosphates from lactate + pyruvate + glutamate by a cell-free system from rat liver.
    Stoecklin FB; Mörikofer-Zwez S; Walter P
    Biochem J; 1986 May; 236(1):61-70. PubMed ID: 2878656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle.
    Brooks GA; Dubouchaud H; Brown M; Sicurello JP; Butz CE
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):1129-34. PubMed ID: 9927705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the relative contributions of enhanced production of oxalacetate and inhibition of pyruvate kinase to acute hormonal stimulation of gluconeogenesis in rat hepatocytes. An analysis of the effects of glucagon, angiotensin II, and dexamethasone on gluconeogenic flux from lactate/pyruvate.
    Sistare FD; Haynes RC
    J Biol Chem; 1985 Oct; 260(23):12761-8. PubMed ID: 4044608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate.
    Siess EA; Brocks DG; Lattke HK; Wieland OH
    Biochem J; 1977 Aug; 166(2):225-35. PubMed ID: 199159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanisms by which mild respiratory chain inhibitors inhibit hepatic gluconeogenesis.
    Owen MR; Halestrap AP
    Biochim Biophys Acta; 1993 Apr; 1142(1-2):11-22. PubMed ID: 8457580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation of oxidation of long-chain fatty acids to gluconeogenesis in the perfused liver of the guinea pig: effect of 2-tetradecylglycidic acid (McN-3802).
    Tutwiler GF; Brentzel HJ
    Eur J Biochem; 1982 Jun; 124(3):465-70. PubMed ID: 7106101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rôle of mitochondrial pyruvate transport in the stimulation by glucagon and phenylephrine of gluconeogenesis from L-lactate in isolated rat hepatocytes.
    Thomas AP; Halestrap AP
    Biochem J; 1981 Sep; 198(3):551-60. PubMed ID: 7326022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrelationships between ureogenesis and gluconeogenesis in perfused rat liver.
    Martín-Requero A; Ciprés G; González-Manchón C; Ayuso MS; Parrilla R
    Biochim Biophys Acta; 1993 Oct; 1158(2):166-74. PubMed ID: 8399317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.