These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3964063)

  • 41. Influence of wheelchair front caster wheel on reverse directional stability.
    Guo S; Cooper RA; Corfman T; Ding D; Grindle G
    Assist Technol; 2003; 15(2):98-104. PubMed ID: 15137726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantifying the effects of on-the-fly changes of seating configuration on the stability of a manual wheelchair.
    Thomas L; Borisoff J; Sparrey CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1897-1900. PubMed ID: 29060262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison between a tilt-in-space wheelchair and a manual wheelchair equipped with a new rear anti-tip device from the perspective of the caregiver.
    Kirby RL; MacDonald B; Smith C; MacLeod DA; Webber A
    Arch Phys Med Rehabil; 2008 Sep; 89(9):1811-5. PubMed ID: 18760168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A technique for the determination of center of gravity and rolling resistance for tilt-seat wheelchairs.
    Lemaire ED; Lamontagne M; Barclay HW; John T; Martel G
    J Rehabil Res Dev; 1991; 28(3):51-8. PubMed ID: 1880750
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of wheelchair drag resistance using a coasting deceleration technique.
    Hoffman MD; Millet GY; Hoch AZ; Candau RB
    Am J Phys Med Rehabil; 2003 Nov; 82(11):880-9; quiz 890-2. PubMed ID: 14566157
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinematics of the elbow during wheelchair propulsion: a comparison of two wheelchairs and two stroking techniques.
    Rudins A; Laskowski ER; Growney ES; Cahalan TD; An KN
    Arch Phys Med Rehabil; 1997 Nov; 78(11):1204-10. PubMed ID: 9365350
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation of a software-based stability assessment system for wheelchairs and their occupants.
    Caldicott SJ; Shapcott N
    J Med Eng Technol; 2008; 32(6):440-7. PubMed ID: 18608789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fewer accidents and better maintenance with active wheelchair check-ups: a randomized controlled clinical trial.
    Hansen R; Tresse S; Gunnarsson RK
    Clin Rehabil; 2004 Sep; 18(6):631-9. PubMed ID: 15473115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of carbon fibre and aluminium materials in the construction of ultralight wheelchairs.
    Gebrosky B; Grindle G; Cooper R; Cooper R
    Disabil Rehabil Assist Technol; 2020 May; 15(4):432-441. PubMed ID: 30907192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Occupant restraint preferences of individuals traveling in motor vehicles while seated in their wheelchairs.
    van Roosmalen L; Lutgendorf M; Manary MA
    Assist Technol; 2008; 20(4):181-93. PubMed ID: 19160905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Issues in maintenance and repairs of wheelchairs: A pilot study.
    Fitzgerald SG; Collins DM; Cooper RA; Tolerico M; Kelleher A; Hunt P; Martin S; Impink B; Cooper R
    J Rehabil Res Dev; 2005; 42(6):853-62. PubMed ID: 16680622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of selected electric-powered wheelchairs using the ANSI/RESNA standards.
    Rentschler AJ; Cooper RA; Fitzgerald SG; Boninger ML; Guo S; Ammer WA; Vitek M; Algood D
    Arch Phys Med Rehabil; 2004 Apr; 85(4):611-9. PubMed ID: 15083438
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The development and testing of a system for wheelchair stability measurement.
    Stefanov D; Avtanski A; Shapcott N; Magee P; Dryer P; Fielden S; Heelis M; Evans J; Moody L
    Med Eng Phys; 2015 Nov; 37(11):1061-9. PubMed ID: 26403319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of rear-wheel position on seating ergonomics and mobility efficiency in wheelchair users with spinal cord injuries: a pilot study.
    Samuelsson KA; Tropp H; Nylander E; Gerdle B
    J Rehabil Res Dev; 2004; 41(1):65-74. PubMed ID: 15273899
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manual wheelchair-handling skills by caregivers using new and conventional rear anti-tip devices: a randomized controlled trial.
    Kirby RL; Walker R; Smith C; Best K; Macleod DA; Thompson K
    Arch Phys Med Rehabil; 2009 Oct; 90(10):1680-4. PubMed ID: 19801056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The short-term influence of rear wheel axle position and training on manual wheelchair propulsion technique in novice able-bodied participants during steady-state treadmill propulsion, a pilot study.
    Rice I; Jayaraman C; Pohlig RT
    Assist Technol; 2020 May; 32(3):136-143. PubMed ID: 30060708
    [No Abstract]   [Full Text] [Related]  

  • 58. Mechanical effects of rear-wheel camber on wheelchairs.
    Trudel G; Kirby RL; Bell AC
    Assist Technol; 1995; 7(2):79-86. PubMed ID: 10159861
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Seat and footrest shocks and vibrations in manual wheelchairs with and without suspension.
    Cooper RA; Wolf E; Fitzgerald SG; Boninger ML; Ulerich R; Ammer WA
    Arch Phys Med Rehabil; 2003 Jan; 84(1):96-102. PubMed ID: 12589628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.
    Pearlman JL; Cooper RA; Karnawat J; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2005 Dec; 86(12):2361-70. PubMed ID: 16344036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.