These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39646)
1. The effects of chemical modification on the refolding transition of alpha-chymotrypsin. Stoesz J; Lumry RW Biophys Chem; 1979 Jul; 10(1):105-12. PubMed ID: 39646 [TBL] [Abstract][Full Text] [Related]
2. N-Acetylbenzotriazole as a protein reagent. Specific behaviour towards delta-chymotrypsin. Reboud-Ravaux M Eur J Biochem; 1976 May; 65(1):25-33. PubMed ID: 6280 [TBL] [Abstract][Full Text] [Related]
3. Refolding transition of alpha-chymotrypsin: pH and salt dependence. Stoesz JD; Lumry RW Biochemistry; 1978 Sep; 17(18):3693-9. PubMed ID: 29661 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of binding to native alpha-chymotrypsin and to forms of alpha-chymotrypsin in which catalytically essential residues are modified; a study of "productive" and "nonproductive" associations. Schultz RM; Konovessi-Panayotatos A; Peters JR Biochemistry; 1977 May; 16(10):2194-202. PubMed ID: 861205 [TBL] [Abstract][Full Text] [Related]
5. The conformational oscillation of delta-chymotrypsin involvement of methionine-192. Ghelis C; Labouesse J; Labouesse B Eur J Biochem; 1975 Nov; 59(1):159-66. PubMed ID: 1247 [TBL] [Abstract][Full Text] [Related]
6. Conformation and activity of chymotrypsin: the pH-dependent, substrate-induced proton uptake. McConn J; Ku E; Odell C; Czerlinski G; Hess GP Science; 1968 Jul; 161(3838):274-6. PubMed ID: 5657332 [TBL] [Abstract][Full Text] [Related]
7. Effects of acetylation and guanidination on alkaline conformations of chymotrypsin. Fojo AT; Whitney PL; Awad WM Arch Biochem Biophys; 1983 Jul; 224(2):636-42. PubMed ID: 6870281 [TBL] [Abstract][Full Text] [Related]
8. Conformation and unfolding thermodynamics of epidermal growth factor and derivatives. Holladay LA; Savage CR; Cohen S; Puett D Biochemistry; 1976 Jun; 15(12):2624-33. PubMed ID: 938633 [TBL] [Abstract][Full Text] [Related]
9. The role of methionine-192 of the chymotrypsin active site in the binding and catalysis of mono(amino acid) and peptide substrates. Treadway WJ; Schultz RM Biochemistry; 1976 Sep; 15(19):4171-4. PubMed ID: 963030 [TBL] [Abstract][Full Text] [Related]
10. A study of the stabilization of tetrahedral adducts by trypsin and delta-chymotrypsin. Finucane MD; Malthouse JP Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):889-900. PubMed ID: 1417749 [TBL] [Abstract][Full Text] [Related]
11. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin. Lin J; Cassidy CS; Frey PA Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318 [TBL] [Abstract][Full Text] [Related]
12. A competitive labelling method for determining the ionization constants and reactivity of individual histidine residues in proteins. The histidines of -chymotrypsin. Cruickshank WH; Kaplan H Biochem J; 1972 Dec; 130(4):1125-31. PubMed ID: 4656796 [TBL] [Abstract][Full Text] [Related]
13. Correlation of low-barrier hydrogen bonding and oxyanion binding in transition state analogue complexes of chymotrypsin. Neidhart D; Wei Y; Cassidy C; Lin J; Cleland WW; Frey PA Biochemistry; 2001 Feb; 40(8):2439-47. PubMed ID: 11327865 [TBL] [Abstract][Full Text] [Related]
14. The binding of inhibitors to alpha-chymotrypsin at alkaline pH. Johnson CH; Knowles JR Biochem J; 1967 May; 103(2):428-30. PubMed ID: 6032980 [TBL] [Abstract][Full Text] [Related]
15. Properties of the histidine residues of indole-chymotrypsin. Implications for the activation process and catalytic mechanism. Cruickshank WH; Kaplan H Biochem J; 1975 Jun; 147(3):411-16. PubMed ID: 241327 [TBL] [Abstract][Full Text] [Related]
16. Effect of the extra n-terminal methionine residue on the stability and folding of recombinant alpha-lactalbumin expressed in Escherichia coli. Chaudhuri TK; Horii K; Yoda T; Arai M; Nagata S; Terada TP; Uchiyama H; Ikura T; Tsumoto K; Kataoka H; Matsushima M; Kuwajima K; Kumagai I J Mol Biol; 1999 Jan; 285(3):1179-94. PubMed ID: 9887272 [TBL] [Abstract][Full Text] [Related]
17. The binding of inhibitors to alpha-chymotrypsin. Johnson CH; Knowles JR Biochem J; 1966 Oct; 101(1):56-62. PubMed ID: 5971792 [TBL] [Abstract][Full Text] [Related]
18. Selective oxidation of Met-192 in bovine alpha-chymotrypsin. Effect on catalytic and inhibitor binding properties. Cutruzzolá F; Ascenzi P; Barra D; Bolognesi M; Menegatti E; Sarti P; Schnebli HP; Tomova S; Amiconi G Biochim Biophys Acta; 1993 Feb; 1161(2-3):201-8. PubMed ID: 8431470 [TBL] [Abstract][Full Text] [Related]
19. Acylation of the alanine149 N-terminal of alpha-chymotrypsin and its effect on catalytic function. Sharma SK; Hopkins TR Biochim Biophys Acta; 1982 Mar; 701(3):413-6. PubMed ID: 7066338 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of the titration of substrate carbonyl groups in the active site of alpha-chymotrypsin by resonance Raman spectroscopy. Tonge PJ; Carey PR Biochemistry; 1989 Aug; 28(16):6701-9. PubMed ID: 2790025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]