BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3964642)

  • 1. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.
    Pietrobon D; Zoratti M; Azzone GF; Caplan SR
    Biochemistry; 1986 Feb; 25(4):767-75. PubMed ID: 3964642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic uncoupling of mitochondrial proton pumps. 1. Non-ohmic conductance cannot account for the nonlinear dependence of static head respiration on delta microH.
    Zoratti M; Favaron M; Pietrobon D; Azzone GF
    Biochemistry; 1986 Feb; 25(4):760-7. PubMed ID: 2870735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling of oxidative phosphorylation. 2. Alternative mechanisms: intrinsic uncoupling or decoupling?
    Pietrobon D; Luvisetto S; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7339-47. PubMed ID: 2962636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling.
    Luvisetto S; Pietrobon D; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation between leaks and slips in oxidative phosphorylation.
    Groen BH; Berden JA; van Dam K
    Biochim Biophys Acta; 1990 Aug; 1019(2):121-7. PubMed ID: 2207111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-force relationships for a six-state proton pump model: intrinsic uncoupling, kinetic equivalence of input and output forces, and domain of approximate linearity.
    Pietrobon D; Caplan SR
    Biochemistry; 1985 Oct; 24(21):5764-76. PubMed ID: 4084491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental discrimination between proton leak and redox slip during mitochondrial electron transport.
    Brand MD; Chien LF; Diolez P
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):27-9. PubMed ID: 8280106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of proton cycling during gramicidin uncoupling of oxidative phosphorylation.
    Luvisetto S; Azzone GF
    Biochemistry; 1989 Feb; 28(3):1100-8. PubMed ID: 2469464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiration in non-phosphorylating yeast mitochondria. Roles of non-ohmic proton conductance and intrinsic uncoupling.
    Ouhabi R; Rigoulet M; Lavie JL; Guérin B
    Biochim Biophys Acta; 1991 Nov; 1060(3):293-8. PubMed ID: 1751514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes.
    Porter RK; Brand MD
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):379-82. PubMed ID: 7654171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: on the nature of "leaks'.
    Pietrobon D; Azzone GF; Walz D
    Eur J Biochem; 1981 Jul; 117(2):389-94. PubMed ID: 7274216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-equilibrium thermodynamic assessment of redox-driven H+ pumps in mitochondria.
    Pietrobon D; Zoratti M; Azzone GF; Stucki JW; Walz D
    Eur J Biochem; 1982 Oct; 127(3):483-94. PubMed ID: 6293816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of loss of thermodynamic control in mitochondria due to hyperthyroidism and temperature.
    Luvisetto S; Schmehl I; Intravaia E; Conti E; Azzone GF
    J Biol Chem; 1992 Aug; 267(22):15348-55. PubMed ID: 1639781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments.
    Petronilli V; Azzone GF; Pietrobon D
    Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria.
    Doerrier C; Garcia-Souza LF; Krumschnabel G; Wohlfarter Y; Mészáros AT; Gnaiger E
    Methods Mol Biol; 2018; 1782():31-70. PubMed ID: 29850993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stoichiometry of H+ pumping in cytochrome oxidase and the mechanism of uncoupling.
    Azzone GF; Zoratti M; Petronilli V; Pietrobon D
    J Inorg Biochem; 1985; 23(3-4):349-56. PubMed ID: 2410567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.