These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 3965712)
1. Lack of influence of the carbamoyl group on the stereochemistry of the acid-catalyzed opening of the aziridine ring of the mitomycins and of congeners. Hornemann U; Keller PJ; Takeda K J Med Chem; 1985 Jan; 28(1):31-6. PubMed ID: 3965712 [TBL] [Abstract][Full Text] [Related]
2. Structure and stereochemistry of some 1,2-disubstituted mitosenes from solvolysis of mitomycin C and mitomycin A. Taylor WG; Remers WA J Med Chem; 1975 Mar; 18(3):307-11. PubMed ID: 1133823 [TBL] [Abstract][Full Text] [Related]
3. Comparative stereochemistry in the aziridine ring openings of N-methylmitomycin A and 7-methoxy-1,2-(N-methylaziridino)mitosene. Cheng L; Remers WA J Med Chem; 1977 Jun; 20(6):767-70. PubMed ID: 874953 [TBL] [Abstract][Full Text] [Related]
4. Reaction of acid-activated mitomycin C with calf thymus DNA and model guanines: elucidation of the base-catalyzed degradation of N7-alkylguanine nucleosides. Tomasz M; Lipman R; Lee MS; Verdine GL; Nakanishi K Biochemistry; 1987 Apr; 26(7):2010-27. PubMed ID: 3109476 [TBL] [Abstract][Full Text] [Related]
5. A comparison of mechanisms proposed for the conversion of mitomycins into mitosenes. Iyengar BS; Remers WA J Med Chem; 1985 Jul; 28(7):963-7. PubMed ID: 3925148 [TBL] [Abstract][Full Text] [Related]
6. MITOMYCIN C: CHEMICAL AND BIOLOGICAL STUDIES ON ALKYLATION. SCHWARTZ HS; SODERGREN JE; PHILIPS FS Science; 1963 Nov; 142(3596):1181-3. PubMed ID: 14069241 [TBL] [Abstract][Full Text] [Related]
7. Reductive metabolism and alkylating activity of mitomycin C induced by rat liver microsomes. Tomasz M; Lipman R Biochemistry; 1981 Aug; 20(17):5056-61. PubMed ID: 6794605 [TBL] [Abstract][Full Text] [Related]
8. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase. Pan SS; Andrews PA; Glover CJ; Bachur NR J Biol Chem; 1984 Jan; 259(2):959-66. PubMed ID: 6319393 [TBL] [Abstract][Full Text] [Related]
9. The derivation of 1a-demethylmitomycin G from mitomycin C. Kono M; Kasai M; Shirahata K; Morimoto M J Antibiot (Tokyo); 1990 Apr; 43(4):383-90. PubMed ID: 2112532 [TBL] [Abstract][Full Text] [Related]
10. Metabolites and DNA adduct formation from flavoenzyme-activated porfiromycin. Pan SS; Iracki T Mol Pharmacol; 1988 Aug; 34(2):223-8. PubMed ID: 3412325 [TBL] [Abstract][Full Text] [Related]
11. Mitomycin C analogues with a substituted hydrazine at position 7. Synthesis, spectral properties, and biological activity. Sawhney KN; Kohn H J Med Chem; 1989 Jan; 32(1):248-52. PubMed ID: 2909738 [TBL] [Abstract][Full Text] [Related]
12. 7-N-(mercaptoalkyl)mitomycins: implications of cyclization for drug function. Na Y; Wang S; Kohn H J Am Chem Soc; 2002 May; 124(17):4666-77. PubMed ID: 11971715 [TBL] [Abstract][Full Text] [Related]
13. Metal complexes of mitomycins. Iyengar BS; Takahashi T; Remers WA; Bradner WT J Med Chem; 1986 Jan; 29(1):144-7. PubMed ID: 3079830 [TBL] [Abstract][Full Text] [Related]
14. NMR and computational characterization of mitomycin cross-linked to adjacent deoxyguanosines in the minor groove of the d(T-A-C-G-T-A).d(T-A-C-G-T-A) duplex. Norman D; Live D; Sastry M; Lipman R; Hingerty BE; Tomasz M; Broyde S; Patel DJ Biochemistry; 1990 Mar; 29(11):2861-75. PubMed ID: 2346750 [TBL] [Abstract][Full Text] [Related]
15. New mitomycin analogs produced by directed biosynthesis. Claridge CA; Bush JA; Doyle TW; Nettleton DE; Moseley JE; Kimball D; Kammer MF; Veitch J J Antibiot (Tokyo); 1986 Mar; 39(3):437-46. PubMed ID: 3700245 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of Mitomycin C and Decarbamoylmitomycin C N(2) deoxyguanosine-adducts. Champeil E; Cheng SY; Huang BT; Conchero-Guisan M; Martinez T; Paz MM; Sapse AM Bioorg Chem; 2016 Apr; 65():90-9. PubMed ID: 26894558 [TBL] [Abstract][Full Text] [Related]
17. Conformations of complexes between mitomycin and decanucleotides. 2. Application of the model to mitomycin C derivatives. Extension to covalent binding with adenine. Remers WA; Rao SN; Singh UC; Kollman PA J Med Chem; 1986 Jul; 29(7):1256-63. PubMed ID: 3100796 [TBL] [Abstract][Full Text] [Related]
18. Kinetics and mechanism of the degradation of 1a-acetylmitomycin C in aqueous solution. Underberg WJ; Beijnen JH Pharm World Sci; 1993 Jun; 15(3):123-7. PubMed ID: 8348108 [TBL] [Abstract][Full Text] [Related]
19. New mitomycin, 10-decarbamoyloxy-9-dehydromitomycin B from Streptomyces caespitosus. Urakawa C; Tsuchiya H; Nakano K J Antibiot (Tokyo); 1981 Feb; 34(2):243-4. PubMed ID: 7298514 [No Abstract] [Full Text] [Related]
20. Chemical aspects of propranolol metabolism: 1,1-diethoxy-3-(1-naphthoxy)-2-propanol and related ring-closure products cis- and trans-4-ethoxy-3-hydroxy-3,4-dihydro-2H-naphtho[1,2-b]pyran. Chen CH; Nelson WL J Pharm Sci; 1983 Aug; 72(8):863-5. PubMed ID: 6620138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]