These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 3966665)

  • 1. Mechanism of the effect of droperidol to induce catecholamine efflux from the adrenal medulla.
    Sumikawa K; Hirano H; Amakata Y; Kashimoto T; Wada A; Izumi F
    Anesthesiology; 1985 Jan; 62(1):17-22. PubMed ID: 3966665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monensin-induced influx of 22Na and the release of catecholamines in cultured bovine adrenal medulla cells and isolated chromaffin granules.
    Izumi F; Wada A; Yanagihara N; Kobayashi H; Toyohira Y
    Biochem Pharmacol; 1986 Sep; 35(17):2937-40. PubMed ID: 3741482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine uptake and release in isolated chromaffin granules exposed to halothane.
    Sumikawa K; Amakata Y; Yoshikawa K; Kashimoto T; Izumi F
    Anesthesiology; 1980 Nov; 53(5):385-9. PubMed ID: 7425376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules.
    Kanner BI; Fishkes H; Maron R; Sharon I; Schuldiner S
    FEBS Lett; 1979 Apr; 100(1):175-8. PubMed ID: 437101
    [No Abstract]   [Full Text] [Related]  

  • 5. Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells.
    Holz RW; Senter RA
    J Neurochem; 1985 Nov; 45(5):1548-57. PubMed ID: 3876408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of nucleotides and catecholamines by chromaffin granules from pig and horse adrenal medulla.
    Carmichael SW; Weber A; Winkler H
    J Neurochem; 1980 Jul; 35(1):270-2. PubMed ID: 7452257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histamine stimulates exocytosis in a sub-population of bovine adrenal chromaffin cells.
    Pender N; Burgoyne RD
    Neurosci Lett; 1992 Sep; 144(1-2):207-10. PubMed ID: 1436704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pentazocine-induced catecholamine efflux from the dog perfused adrenals.
    Fukumitsu K; Sumikawa K; Hayashi Y; Kinouchi K; Yoshiya I
    J Pharm Pharmacol; 1991 May; 43(5):331-6. PubMed ID: 1680175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of trifluoperazine on catecholamine secretion by isolated bovine adrenal medullary chromaffin cells.
    Brooks JC; Treml S
    Biochem Pharmacol; 1983 Jan; 32(2):371-3. PubMed ID: 6870962
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of reserpine and tetrabenazine on catecholamine and ATP storage in cultured bovine adrenal medullary chromaffin cells.
    Caughey B; Kirshner N
    J Neurochem; 1987 Aug; 49(2):563-73. PubMed ID: 3598586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flux of catecholamines through chromaffin vesicles in cultured bovine adrenal medullary cells.
    Corcoran JJ; Wilson SP; Kirshner N
    J Biol Chem; 1984 May; 259(10):6208-14. PubMed ID: 6725249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The mechanism of action of halothane on adrenal medullary chromaffin granules (author's transl)].
    Sumikawa K; Ishizaka N; Nagai H; Matsumoto T; Amakata Y
    Masui; 1981 Jun; 30(6):553-8. PubMed ID: 7338993
    [No Abstract]   [Full Text] [Related]  

  • 13. A dopaminergic receptor in adrenal medulla as a possible site of action for the droperidol-evoked hypertensive response.
    Montiel C; Artalejo AR; Bermejo PM; Sánchez-García P
    Anesthesiology; 1986 Nov; 65(5):474-9. PubMed ID: 3777477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of release of catecholamine and other granular contents from perifused adrenal chromaffin cells of guinea-pig.
    Ito S
    J Physiol; 1983 Aug; 341():153-67. PubMed ID: 6620178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese as agonist and antagonist of calcium ions: dual effect upon catecholamine release from adrenal medulla.
    Arqueros L; Daniels AJ
    Life Sci; 1981 Mar; 28(13):1535-40. PubMed ID: 7242246
    [No Abstract]   [Full Text] [Related]  

  • 16. Energy utilization in the uptake of catecholamines by synaptic vesicles and adrenal chromaffin granules.
    Toll L; Gundersen CB; Howard BD
    Brain Res; 1977 Nov; 136(1):59-66. PubMed ID: 589446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strychnine affects catecholamine secretion from bovine adrenal medulla chromaffin cells.
    Dar DE; Zinder O
    Naunyn Schmiedebergs Arch Pharmacol; 1995 Jul; 352(1):11-6. PubMed ID: 7477420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the monoamine uptake system in catecholamine storage vesicles isolated from a pheochromocytoma taken from a child.
    Roisin MP; Isambert MF; Henry JP; Guillot M; Lenoir G
    Biochem Pharmacol; 1984 Jul; 33(14):2245-52. PubMed ID: 6466347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered reactivity of the rat adrenal medulla.
    Carbonaro DA; Mitchell JP; Hall FL; Vulliet PR
    Brain Res Bull; 1988 Sep; 21(3):451-8. PubMed ID: 3214750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gadolinium ion: a potent blocker of calcium channels and catecholamine release from cultured chromaffin cells.
    Bourne GW; Trifaró JM
    Neuroscience; 1982 Jul; 7(7):1615-22. PubMed ID: 6289176
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.