BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 3966665)

  • 21. A characterization of the nucleotide uptake of chromaffin granules of bovine adrenal medulla.
    Aberer W; Kostron H; Huber E; Winkler H
    Biochem J; 1978 Jun; 172(3):353-60. PubMed ID: 28725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osmotic lysis of bovine chromaffin granules in isotonic solutions of salts of weak organic acids. Release of catecholamines, ATP, dopamine beta-hydroxylase, and enkephalin-like material.
    Holz RW
    J Biol Chem; 1980 Aug; 255(16):7751-5. PubMed ID: 7400143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ascorbic acid and catecholamine release from digitonin-treated chromaffin cells.
    Morita K; Levine M; Heldman E; Pollard HB
    J Biol Chem; 1985 Dec; 260(28):15112-6. PubMed ID: 4066665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of the catecholamine transporter in bovine chromaffin granules using [3H]reserpine.
    Deupree JD; Weaver JA
    J Biol Chem; 1984 Sep; 259(17):10907-12. PubMed ID: 6469989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla.
    Levine M; Morita K; Heldman E; Pollard HB
    J Biol Chem; 1985 Dec; 260(29):15598-603. PubMed ID: 3877726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Restoration of catecholamine content of previously depleted adrenal medulla in vitro: importance of synthesis in maintaining the catecholamine stores.
    Wakade AR; Wakade TD; Malhotra RK
    J Neurochem; 1988 Sep; 51(3):820-9. PubMed ID: 2900877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis.
    Hampton RY; Holz RW
    J Cell Biol; 1983 Apr; 96(4):1082-8. PubMed ID: 6833392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromogranin A dopamine -hydroxylase and secretion from the adrenal medulla.
    Kirshner N; Kirshner AG
    Philos Trans R Soc Lond B Biol Sci; 1971 Jun; 261(839):279-89. PubMed ID: 4399620
    [No Abstract]   [Full Text] [Related]  

  • 29. Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells.
    Dunn LA; Holz RW
    J Biol Chem; 1983 Apr; 258(8):4989-93. PubMed ID: 6833287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of sodium and calcium ions on the release of catecholamines from the adrenal medulla: sodium deprivation induces release by exocytosis in the absence of extracellular calcium.
    Lastowecka A; Trifaró JM
    J Physiol; 1974 Feb; 236(3):681-705. PubMed ID: 4207131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells.
    von Rüden L; Neher E
    Science; 1993 Nov; 262(5136):1061-5. PubMed ID: 8235626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of calcium and phosphate on catecholamines, ATP and dopamine beta-hydroxylase of chromaffin medullary granules.
    Schümann HJ; Althoff B
    Naunyn Schmiedebergs Arch Pharmacol; 1976; 293(1):67-74. PubMed ID: 948353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of the catecholamine transporter during the preparation of chromaffin granule membrane 'ghosts'.
    Gasnier B; Scherman D; Henry JP
    FEBS Lett; 1987 Sep; 222(1):215-9. PubMed ID: 3653399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of calcium and limited proteolysis on membrane-bound and releasable dopamine beta-hydroxylase in adrenomedullary catecholamine granules.
    Helle KB; Pihl KE; Serck-Hanssen G
    Acta Physiol Scand; 1985 Nov; 125(3):423-7. PubMed ID: 3909741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does the carrier of chromaffin granules transport the protonated or the uncharged species of catecholamines?
    Kobold G; Langer R; Burger A
    Naunyn Schmiedebergs Arch Pharmacol; 1985 Nov; 331(2-3):209-19. PubMed ID: 3003589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ascorbic acid and catecholamine secretion from cultured chromaffin cells.
    Levine M; Asher A; Pollard H; Zinder O
    J Biol Chem; 1983 Nov; 258(21):13111-5. PubMed ID: 6630224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitory effect of quinidine on catecholamine release from adrenal medulla.
    Kashimoto T; Izumi F; Wada A; Miyashita T; Oka M
    Res Commun Chem Pathol Pharmacol; 1979 Mar; 23(3):475-82. PubMed ID: 461971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential induction of gene expression of catecholamine biosynthetic enzymes and preferential increase in norepinephrine by forskolin.
    Hwang O; Kim ML; Lee JD
    Biochem Pharmacol; 1994 Nov; 48(10):1927-34. PubMed ID: 7986204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A), ATP and catecholamine content in bovine adrenal medulla, chromaffin granules and chromaffin cells.
    Sillero MA; Del Valle M; Zaera E; Michelena P; García AG; Sillero A
    Biochimie; 1994; 76(5):404-9. PubMed ID: 7849106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential effects of D 600 on release of catecholamines by acetylcholine, histamine, tyramine and by cyclic AMP from canine adrenal medulla.
    Hiwatari M; Taira N
    Jpn J Pharmacol; 1978 Oct; 28(5):671-80. PubMed ID: 214600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.