These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 3966700)
21. Effect of continuous positive airway pressure on lung mechanics during high-frequency jet ventilation. Schlachter MD; Perry ME Crit Care Med; 1984 Sep; 12(9):755-8. PubMed ID: 6380938 [TBL] [Abstract][Full Text] [Related]
22. [Mechanical ventilation in acute respiratory distress syndrome (ARDS): lung protecting strategies for improved alveolar recruitment]. Schultz MJ; van Zanten AR; de Smet AM; Kesecioglu J Ned Tijdschr Geneeskd; 2003 Feb; 147(8):327-31. PubMed ID: 12661116 [TBL] [Abstract][Full Text] [Related]
23. Aspiration of airway dead space. A new method to enhance CO2 elimination. De Robertis E; Sigurdsson SE; Drefeldt B; Jonson B Am J Respir Crit Care Med; 1999 Mar; 159(3):728-32. PubMed ID: 10051243 [TBL] [Abstract][Full Text] [Related]
24. Dependence of lung injury on inflation rate during low-volume ventilation in normal open-chest rabbits. D'Angelo E; Pecchiari M; Saetta M; Balestro E; Milic-Emili J J Appl Physiol (1985); 2004 Jul; 97(1):260-8. PubMed ID: 15020576 [TBL] [Abstract][Full Text] [Related]
25. Measurement of changes in respiratory mechanics during partial liquid ventilation using jet pulses. Schmalisch G; Schmidt M; Proquitté H; Foitzik B; Rüdiger M; Wauer RR Crit Care Med; 2003 May; 31(5):1435-41. PubMed ID: 12771615 [TBL] [Abstract][Full Text] [Related]
26. Deviation of tracheal pressure from airway opening pressure during high-frequency oscillatory ventilation in a porcine lung model. Johannes A; Zollhoefer B; Eujen U; Kredel M; Rauch S; Roewer N; Muellenbach RM Exp Lung Res; 2013 Apr; 39(3):130-5. PubMed ID: 23458472 [TBL] [Abstract][Full Text] [Related]
27. Effects of different gain settings during assisted mechanical ventilation using respiratory unloading in rabbits. Schulze A; Rich W; Schellenberg L; Schaller P; Heldt GP Pediatr Res; 1998 Jul; 44(1):132-8. PubMed ID: 9667383 [TBL] [Abstract][Full Text] [Related]
28. Experimental model of laryngotracheal stenosis in infants: effects of different high-frequency jet ventilation patterns on pulmonary parameters. Mausser G; Schellauf A; Scherübl M; Arrer A; Schwarz G Paediatr Anaesth; 2011 Aug; 21(8):894-9. PubMed ID: 21410827 [TBL] [Abstract][Full Text] [Related]
29. Pressure-release tracheal gas insufflation reduces airway pressures in lung-injured sheep maintaining eucapnia. Kirmse M; Fujino Y; Hromi J; Mang H; Hess D; Kacmarek RM Am J Respir Crit Care Med; 1999 Nov; 160(5 Pt 1):1462-7. PubMed ID: 10556106 [TBL] [Abstract][Full Text] [Related]
30. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Yoshida T; Uchiyama A; Matsuura N; Mashimo T; Fujino Y Crit Care Med; 2012 May; 40(5):1578-85. PubMed ID: 22430241 [TBL] [Abstract][Full Text] [Related]
31. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Dreyfuss D; Saumon G Am Rev Respir Dis; 1993 Nov; 148(5):1194-203. PubMed ID: 8239153 [TBL] [Abstract][Full Text] [Related]
32. Carbon dioxide elimination during high-frequency jet ventilation. Korvenranta H; Carlo WA; Goldthwait DA; Fanaroff AA J Pediatr; 1987 Jul; 111(1):107-13. PubMed ID: 3110386 [TBL] [Abstract][Full Text] [Related]
33. Air entrainment during high-frequency jet-ventilation. Simulation of a bronchoscopy with a lung model. Seigneur F; Fischler M; Bourreli B; Melchior JC; Lavaud C; Vourc'h G Bull Eur Physiopathol Respir; 1986; 22(4):341-7. PubMed ID: 3768568 [TBL] [Abstract][Full Text] [Related]
34. Partitioning of pulmonary resistance in dogs: effect of tidal volume and frequency. Brusasco V; Warner DO; Beck KC; Rodarte JR; Rehder K J Appl Physiol (1985); 1989 Mar; 66(3):1190-6. PubMed ID: 2708244 [TBL] [Abstract][Full Text] [Related]
35. Alveolar pressure and airway resistance during maximal and submaximal respiratory efforts. Aldrich TK; Shapiro SM; Sherman MS; Prezant DJ Am Rev Respir Dis; 1989 Oct; 140(4):899-906. PubMed ID: 2802377 [TBL] [Abstract][Full Text] [Related]
36. Role of airway mechanoreceptors in the inhibition of inspiration during mechanical ventilation in humans. Simon PM; Skatrud JB; Badr MS; Griffin DM; Iber C; Dempsey JA Am Rev Respir Dis; 1991 Nov; 144(5):1033-41. PubMed ID: 1952428 [TBL] [Abstract][Full Text] [Related]
37. Lung volume, pressure, flow, and density relationships during constant-flow ventilation in dogs. Brampton W; Young JD J Appl Physiol (1985); 1993 Jan; 74(1):197-202. PubMed ID: 8444691 [TBL] [Abstract][Full Text] [Related]
38. How to ventilate lungs as small as 12.5% of normal: the new technique of intratracheal pulmonary ventilation. Müller EE; Kolobow T; Mandava S; Jones M; Vitale G; Aprigliano M; Yamada K Pediatr Res; 1993 Nov; 34(5):606-10. PubMed ID: 8284097 [TBL] [Abstract][Full Text] [Related]
39. Effects of changing inspiratory to expiratory time ratio on carbon dioxide elimination during high-frequency jet ventilation. Paloski WH; Barie PS; Mullins RJ; Newell JC Am Rev Respir Dis; 1985 Jan; 131(1):109-14. PubMed ID: 3917629 [TBL] [Abstract][Full Text] [Related]