BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3966801)

  • 1. Nanosecond motions of the single tryptophan residues in apolipoproteins C-I and C-II: a study by oxygen quenching and fluorescence depolarization.
    Maliwal BP; Cardin AD; Jackson RL; Lakowicz JR
    Arch Biochem Biophys; 1985 Jan; 236(1):370-8. PubMed ID: 3966801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosecond rotational motions of apolipoprotein C-I in solution and in complexes with dimyristoylphosphatidylcholine.
    Jonas A; Privat JP; Wahl P; Osborne JC
    Biochemistry; 1982 Nov; 21(24):6205-11. PubMed ID: 7150552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies.
    Lakowicz JR; Freshwater G; Weber G
    Biophys J; 1980 Oct; 32(1):591-601. PubMed ID: 7248463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins.
    Lakowicz JR; Maliwal BP
    J Biol Chem; 1983 Apr; 258(8):4794-801. PubMed ID: 6833277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence quenching studies of apolipoprotein A-I in solution and in lipid-protein complexes: protein dynamics.
    Mantulin WW; Pownall HJ; Jameson DM
    Biochemistry; 1986 Dec; 25(24):8034-42. PubMed ID: 3099838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of dissociation of human apolipoproteins A-I, A-11, and C from complexes with dimyristoylphosphatidylcholine as studied by thermal denaturation.
    Reijngoud DJ; Phillips MC
    Biochemistry; 1984 Feb; 23(4):726-34. PubMed ID: 20815113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ligand binding and conformational changes in proteins on oxygen quenching and fluorescence depolarization of tryptophan residues.
    Maliwal BP; Lakowicz JR
    Biophys Chem; 1984 Jun; 19(4):337-44. PubMed ID: 17005145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between internal motion and emission kinetics of tryptophan residues in proteins.
    Kouyama T; Kinosita K; Ikegami A
    Eur J Biochem; 1989 Jul; 182(3):517-21. PubMed ID: 2753033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent fluorescence intensity and depolarization of diphenylhexatriene in micellar complexes of apolipoprotein C-I and dimyristoylglycerophosphocholine.
    Jonas A; Privat JP; Wahl P
    Eur J Biochem; 1983 Jun; 133(1):173-7. PubMed ID: 6852023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subnanosecond motions of tryptophan residues in proteins.
    Munro I; Pecht I; Stryer L
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):56-60. PubMed ID: 284374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-quenching-resolved spectra of melittin in lipid bilayers.
    Kaszycki P; Wasylewski Z
    Biochim Biophys Acta; 1990 Sep; 1040(3):337-45. PubMed ID: 2223839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bovine apolipoproteins C. II. Isolation and partial physicochemical characterization of complexes with L-alpha-dimyristoyl phosphatidylcholine.
    Patterson BW; Jonas A
    Biochim Biophys Acta; 1980 Sep; 619(3):587-603. PubMed ID: 7459367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental modulation of M13 coat protein tryptophan fluorescence dynamics.
    Johnson ID; Hudson BS
    Biochemistry; 1989 Jul; 28(15):6392-400. PubMed ID: 2675970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotational freedom of tryptophan residues in proteins and peptides.
    Lakowicz JR; Maliwal BP; Cherek H; Balter A
    Biochemistry; 1983 Apr; 22(8):1741-52. PubMed ID: 6849881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence spectroscopy of single tryptophan mutants of apolipophorin-III in discoidal lipoproteins of dimyristoylphosphatidylcholine.
    Soulages JL; Arrese EL
    Biochemistry; 2000 Aug; 39(34):10574-80. PubMed ID: 10956049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of time-resolved fluorescence anisotropy in lipid-protein systems. II. Application to tryptophan fluorescence of bacteriophage M13 coat protein incorporated in phospholipid bilayers.
    Peng K; Visser AJ; van Hoek A; Wolfs CJ; Hemminga MA
    Eur Biophys J; 1990; 18(5):285-93. PubMed ID: 2369871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic studies of the tyrosine residues of human plasma apolipoprotein A-II.
    Massey JB; Pownall HJ
    Biochim Biophys Acta; 1989 Nov; 999(2):111-20. PubMed ID: 2512989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of mixed micelles and vesicles of human apolipoproteins A-I and A-II with synthetic and natural lecithins and the bile salt sodium taurocholate: quasi-elastic light scattering studies.
    Donovan JM; Benedek GB; Carey MC
    Biochemistry; 1987 Dec; 26(25):8215-33. PubMed ID: 3126801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study.
    Ichiye T; Karplus M
    Biochemistry; 1983 Jun; 22(12):2884-93. PubMed ID: 6871168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dynamic behavior of apoproteins of human plasma very low density lipoproteins and lipolysis regulation].
    Dergunov AD; Shuvaev VV; Perova NV
    Biokhimiia; 1990 Jan; 55(1):134-46. PubMed ID: 2160840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.