BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3967021)

  • 1. Na+-dependent transport of alpha-aminoisobutyrate in isolated basolateral membrane vesicles from rat parotid glands.
    Takuma T; Baum BJ
    Biochim Biophys Acta; 1985 Jan; 812(2):453-9. PubMed ID: 3967021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Na+/H+ exchange in rat parotid basolateral membrane vesicles.
    Manganel M; Turner RJ
    J Membr Biol; 1988 Jun; 102(3):247-54. PubMed ID: 2845092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine.
    Ghijsen WE; De Jong MD; Van Os CH
    Biochim Biophys Acta; 1983 Apr; 730(1):85-94. PubMed ID: 6403033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.
    van Heeswijk MP; Geertsen JA; van Os CH
    J Membr Biol; 1984; 79(1):19-31. PubMed ID: 6737462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transport mechanisms in basolateral plasma membrane-enriched vesicles from rat parotid gland.
    Takuma T; Kuyatt BL; Baum BJ
    Biochem J; 1985 Apr; 227(1):239-45. PubMed ID: 3994684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-aminoisobutyrate transport into cells from R3230AC mammary adenocarcinoma. Evidence for sodium ion-dependent and -independent carrier-mediated entry and effects of diabetes.
    Hissin PJ; Hilf R
    Biochem J; 1978 Oct; 176(1):205-15. PubMed ID: 728108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ouabain-insensitive active sodium transport in rat jejunum: evidence from ATPase activities, Na uptake by basolateral membrane vesicles and in vitro transintestinal transport.
    Tosco M; Orsenigo MN; Esposito G; Faelli A
    Cell Biochem Funct; 1988 Jul; 6(3):155-64. PubMed ID: 2970332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats.
    Bellemann P
    Biochem J; 1981 Sep; 198(3):475-83. PubMed ID: 6275850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver.
    Suchy FJ; Courchene SM; Blitzer BL
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G648-54. PubMed ID: 2408482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles.
    Suchy FJ; Bucuvalas JC; Goodrich AL; Moyer MS; Blitzer BL
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G665-73. PubMed ID: 3022600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamine transport by rat basolateral membrane vesicles.
    Ghishan FK; Sutter W; Said H; Leonard D; Pietsch J; Abumrad N
    Biochim Biophys Acta; 1989 Feb; 979(1):77-81. PubMed ID: 2917169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of carbachol on extracellular Na-dependent AIB uptake in rat parotid gland.
    Keryer G; Rossignol B
    Am J Physiol; 1980 Sep; 239(3):G183-9. PubMed ID: 7435573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na(+)- and H(+)-gradient-dependent transport of alpha-aminoisobutyrate by luminal membrane vesicles from rabbit proximal tubule.
    Jessen H; Vorum H; Jørgensen KE; Sheikh MI
    J Physiol; 1991 May; 436():149-67. PubMed ID: 2061829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Na(+)-dependent and an Na(+)-independent system for glutamine transport in rat liver basolateral membrane vesicles.
    Said HM; Hollander D; Khorchid S
    Gastroenterology; 1991 Oct; 101(4):1094-101. PubMed ID: 1889703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies.
    Blitzer BL; Donovan CB
    J Biol Chem; 1984 Jul; 259(14):9295-301. PubMed ID: 6746649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active sodium transport in basolateral plasma membrane vesicles from rat kidney proximal tubular cells.
    Marín R; Proverbio T; Proverbio F
    Biochim Biophys Acta; 1985 Apr; 814(2):363-73. PubMed ID: 2983766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC; Blitzer BL; Boyer JL
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonium ion substitutes for K+ in ATP-dependent Na+ transport by basolateral membrane vesicles.
    Towle DW; Hølleland T
    Am J Physiol; 1987 Mar; 252(3 Pt 2):R479-89. PubMed ID: 3030142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ gradient-dependent p-aminohippurate (PAH) transport in rat basolateral membrane vesicles.
    Kasher JS; Holohan PD; Ross CR
    J Pharmacol Exp Ther; 1983 Oct; 227(1):122-9. PubMed ID: 6312013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method for the isolation of basolateral plasma membrane vesicles from rat kidney cortex. Enzyme activities and some properties of glucose transport.
    Inui K; Okano T; Takano M; Kitazawa S; Hori R
    Biochim Biophys Acta; 1981 Sep; 647(1):150-4. PubMed ID: 6271206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.