BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 3967047)

  • 1. Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group.
    Miyawaki O; Wingard LB
    Biochim Biophys Acta; 1985 Jan; 838(1):60-8. PubMed ID: 3967047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific immobilization of flavin adenine dinucleotide on indium/tin oxide electrodes through flavin adenine amino group.
    Narasimhan K; Wingard LB
    Appl Biochem Biotechnol; 1985 Jun; 11(3):221-32. PubMed ID: 4051479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes.
    Goran JM; Mantilla SM; Stevenson KJ
    Anal Chem; 2013 Feb; 85(3):1571-81. PubMed ID: 23289639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the analysis of the electrode kinetics of flavin adenine dinucleotide redox center of glucose oxidase immobilized on carbon electrodes.
    Simonov AN; Grosse W; Mashkina EA; Bethwaite B; Tan J; Abramson D; Wallace GG; Moulton SE; Bond AM
    Langmuir; 2014 Mar; 30(11):3264-73. PubMed ID: 24571209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon.
    Miyawaki O; Wingard LB
    Biotechnol Bioeng; 1984 Nov; 26(11):1364-71. PubMed ID: 18551661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode surface.
    Wei H; Omanovic S
    Chem Biodivers; 2008 Aug; 5(8):1622-1639. PubMed ID: 18729097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.
    Zhou X; Tan B; Zheng X; Kong D; Li Q
    Anal Biochem; 2015 Nov; 489():9-16. PubMed ID: 26278169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulation of flavin adenine dinucleotide immobilized on charged single-walled carbon nanotubes for biosensor applications.
    Yang G; Kang Z; Ye X; Wu T; Zhu Q
    Biomaterials; 2012 Dec; 33(34):8757-70. PubMed ID: 22975425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of a covalent flavin linkage in lipoamide dehydrogenase. Reaction with 8-Cl-FAD.
    Moore EG; Cardemil E; Massey V
    J Biol Chem; 1978 Sep; 253(18):6413-22. PubMed ID: 681358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein.
    Hassan-Abdallah A; Bruckner RC; Zhao G; Jorns MS
    Biochemistry; 2005 May; 44(17):6452-62. PubMed ID: 15850379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electropolymerized flavin adenine dinucleotide as an advanced NADH transducer.
    Karyakin AA; Ivanova YN; Revunova KV; Karyakina EE
    Anal Chem; 2004 Apr; 76(7):2004-9. PubMed ID: 15053664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic properties of streptococcal NADH oxidase containing artificial flavins.
    Ahmed SA; Claiborne A
    J Biol Chem; 1992 Dec; 267(36):25822-9. PubMed ID: 1464596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.
    Jayabalan R; Sathishkumar M; Jeong ES; Mun SP; Yun SE
    Bioresour Technol; 2012 Nov; 123():686-9. PubMed ID: 22940418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism of labilization of Penicillium vitale glucose oxidase].
    DolgiÄ­ NL; Degtiar' RG; GulyÄ­ MF
    Ukr Biokhim Zh; 1977; 49(2):90-5. PubMed ID: 867542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxylic and polyethyleneimine-bound FAD derivatives. Synthesis, coenzymic properties, conformational and enzyme-coenzyme interaction studies.
    Zappelli P; Pappa R; Rossodivita A; Re L
    Eur J Biochem; 1978 Sep; 89(2):491-9. PubMed ID: 30629
    [No Abstract]   [Full Text] [Related]  

  • 16. Stereochemistry and accessibility of prosthetic groups in flavoproteins.
    Manstein DJ; Massey V; Ghisla S; Pai EF
    Biochemistry; 1988 Apr; 27(7):2300-5. PubMed ID: 2898258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exchange of free and bound coenzyme of flavin enzymes studied with [14C]FAD.
    Okuda J; Nagamine J; Yagi K
    Biochim Biophys Acta; 1979 Feb; 566(2):245-52. PubMed ID: 33712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption behavior of dinucleotides on bare and ru-modified glassy carbon electrode surfaces.
    Wei HZ; van de Ven TG; Omanovic S; Zeng YW
    Langmuir; 2008 Nov; 24(21):12375-84. PubMed ID: 18839974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the molecular complex of flavins. V. Possible role of free sulfhydryl group in apoprotein of glucose oxidase and 6-amino group in adenine moiety of FAD.
    Tsuge H; Mitsuda H
    J Biochem; 1974 Feb; 75(2):399-406. PubMed ID: 4837449
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.