These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3967362)

  • 1. A sensitive high-temperature electrothermal atomic absorption analysis for Rb+ in erythrocytes and plasma of normal and hypertensive persons.
    Hallis KF; Boon NA; Perkins CM; Aronson JK; Grahame-Smith DG
    Clin Chem; 1985 Feb; 31(2):274-6. PubMed ID: 3967362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive method for analysis of strontium in human and animal plasma by graphite furnace atomic absorption spectrophotometry.
    Barto R; Sips AJ; van der Vijgh WJ; Netelenbos JC
    Clin Chem; 1995 Aug; 41(8 Pt 1):1159-63. PubMed ID: 7628091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of rubidium in human erythrocytes, plasma, and urine by atomic absorption spectrophotometry.
    Wood OL
    Biochem Med; 1970 Jun; 3(6):458-64. PubMed ID: 5002106
    [No Abstract]   [Full Text] [Related]  

  • 4. Optimisation of parameters for determination of rubidium in spent CAPD fluids by flame and electrothermal atomic absorption spectrometry.
    Scancar J; Milacic R; Benedik M; Bukovec P
    J Pharm Biomed Anal; 1999 Nov; 21(2):423-8. PubMed ID: 10703999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel assay of cell rubidium uptake using graphite furnace atomic absorption: application to rats on a magnesium-deficient diet.
    Zhen Y; Franz KB; Graves SW
    J Nutr Biochem; 2005 May; 16(5):291-6. PubMed ID: 15866229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct determination of lithium in erythrocytes by electrothermal atomic absorption spectrometry.
    Genyuan Y; DeXuan X; Ruixiang J
    Analyst; 1995 Jun; 120(6):1657-9. PubMed ID: 7604954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of plasma and erythrocyte lithium concentrations by atomic absorption spectrophotometry.
    Hisayasu GH; Cohen JL; Nelson RW
    Clin Chem; 1977 Jan; 23(1):41-5. PubMed ID: 832371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cation flux in erythrocytes of patients with essential hypertension].
    Gless KH; Roelcke U; Fiehn W; Mann JF; Schaz K; Sütterlin U; Speck GA
    Klin Wochenschr; 1983 May; 61(10):517-21. PubMed ID: 6876684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized atomic absorption spectrophotometry of calcium in erythrocytes.
    Nomoto S; Shoji S
    Clin Chem; 1987 Nov; 33(11):2004-7. PubMed ID: 3677373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved assay for bismuth in biological samples by atomic absorption spectrophotometry with hydride generation.
    Froomes PR; Wan AT; Harrison PM; McLean AJ
    Clin Chem; 1988 Feb; 34(2):382-4. PubMed ID: 3342513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for the simultaneous determination of cadmium and zinc in whole blood by atomic absorption spectrophotometry and measurement in normotensive and hypertensive humans.
    Tulley RT; Lehmann HP
    Clin Chim Acta; 1982 Jul; 122(2):189-202. PubMed ID: 7105407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection.
    Burguera-Pascu M; Rodríguez-Archilla A; Burguera JL; Burguera M; Rondón C; Carrero P
    Anal Chim Acta; 2007 Sep; 600(1-2):214-20. PubMed ID: 17903487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in the plasma and erythrocyte concentrations of rubidium in patients with renal failure].
    Allain P; Mauras Y; Tafforeau C; Houssin A; Cartier F
    Presse Med; 1984 Oct; 13(37):2249-51. PubMed ID: 6239169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved electrothermal determination of aluminum in serum by atomic absorption spectroscopy.
    Alderman FR; Gitelman HJ
    Clin Chem; 1980 Feb; 26(2):258-60. PubMed ID: 7353272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of matrix effects in electrothermal atomic absorption spectrophotometric determinations of bismuth in serum and urine.
    Dean S; Tscherwonyi PJ; Riley WJ
    Clin Chem; 1992 Jan; 38(1):119-22. PubMed ID: 1733583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A graphite furnace-atomic absorption spectrometry-based rubidium efflux assay for screening activators of the K
    Bartz FM; Beirow K; Wurm K; Baecker D; Link A; Bednarski PJ
    Arch Pharm (Weinheim); 2023 May; 356(5):e2200585. PubMed ID: 36748851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc in plasma, neutrophils, lymphocytes, and erythrocytes as determined by flameless atomic absorption spectrophotometry.
    Whitehouse RC; Prasad AS; Rabbani PI; Cossack ZT
    Clin Chem; 1982 Mar; 28(3):475-80. PubMed ID: 7067090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscosity adaption for an automated micromethod of flame atomic absorption spectrometry, and intracellular trace-element analysis after pressure decomposition: zinc determination in plasma and erythrocytes.
    Sprenger KB; Franz HE
    Clin Chem; 1983 Aug; 29(8):1522-6. PubMed ID: 6872213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation transport abnormalities in vivo in untreated essential hypertension.
    Boon NA; Aronson JK; Hallis KF; Grahame-Smith DG
    Clin Sci (Lond); 1986 Jun; 70(6):611-6. PubMed ID: 3709067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Atomic absorption spectrophotometry of rubidium levels in several biological media. Technical problems and preliminary results].
    Chechan C; Marchandise X; Lekieffre J
    C R Seances Soc Biol Fil; 1975; 169(4):991-6. PubMed ID: 129276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.