These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3968039)

  • 1. Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures.
    Douglas C; Halperin W; Gordon M; Nester E
    J Bacteriol; 1985 Feb; 161(2):764-6. PubMed ID: 3968039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agrobacterium tumefaciens mutants affected in attachment to plant cells.
    Douglas CJ; Halperin W; Nester EW
    J Bacteriol; 1982 Dec; 152(3):1265-75. PubMed ID: 6292165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.
    Matthysse AG; Wyman PM; Holmes KV
    Infect Immun; 1978 Nov; 22(2):516-22. PubMed ID: 730370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.
    Matthysse AG
    J Bacteriol; 1983 May; 154(2):906-15. PubMed ID: 6302086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial interactions of Agrobacterium tumefaciens with plant host cells.
    Matthysse AG
    Crit Rev Microbiol; 1986; 13(3):281-307. PubMed ID: 3533427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp., and Triticum aestivum.
    Graves AE; Goldman SL; Banks SW; Graves AC
    J Bacteriol; 1988 May; 170(5):2395-400. PubMed ID: 3360748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells.
    Matthysse AG; Holmes KV; Gurlitz RH
    J Bacteriol; 1981 Jan; 145(1):583-95. PubMed ID: 7462151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of attachment, virulence and nodulation of Agrobacterium tumefaciens chvB mutants by rhicadhesin.
    Swart S; Smit G; Lugtenberg BJ; Kijne JW
    Mol Microbiol; 1993 Nov; 10(3):597-605. PubMed ID: 7968537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of a vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells.
    Wagner VT; Matthysse AG
    J Bacteriol; 1992 Sep; 174(18):5999-6003. PubMed ID: 1381711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flagella-specific bacteriophages of Agrobacterium tumefaciens: demonstration of virulence of nonmotile mutants.
    Bradley DE; Douglas CJ; Peschon J
    Can J Microbiol; 1984 May; 30(5):676-81. PubMed ID: 6744126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time required for tumor induction by Agrobacterium tumefaciens.
    Sykes LC; Matthysse AG
    Appl Environ Microbiol; 1986 Sep; 52(3):597-8. PubMed ID: 3767365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium rhizogenes mutants that fail to bind to plant cells.
    Crews JL; Colby S; Matthysse AG
    J Bacteriol; 1990 Nov; 172(11):6182-8. PubMed ID: 2228955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants.
    Ashby AM; Watson MD; Loake GJ; Shaw CH
    J Bacteriol; 1988 Sep; 170(9):4181-7. PubMed ID: 3410827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis.
    Dazzo FB; Truchet GL; Sherwood JE; Hrabak EM; Abe M; Pankratz SH
    Appl Environ Microbiol; 1984 Dec; 48(6):1140-50. PubMed ID: 6393874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of nonattaching mutants of Agrobacterium tumefaciens.
    Matthysse AG
    J Bacteriol; 1987 Jan; 169(1):313-23. PubMed ID: 3025176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium.
    Usami S; Morikawa S; Takebe I; Machida Y
    Mol Gen Genet; 1987 Sep; 209(2):221-6. PubMed ID: 17191337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of a host-range-determining locus from Agrobacterium tumefaciens.
    Yanofsky MF; Nester EW
    J Bacteriol; 1986 Oct; 168(1):244-50. PubMed ID: 3759904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host.
    Schell J; Van Montagu M; De Beuckeleer M; De Block M; Depicker A; De Wilde M; Engler G; Genetello C; Hernalsteens JP; Holsters M; Seurinck J; Silva B; Van Vliet F; Villarroel R
    Proc R Soc Lond B Biol Sci; 1979 Apr; 204(1155):251-66. PubMed ID: 36626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation.
    Mysore KS; Kumar CT; Gelvin SB
    Plant J; 2000 Jan; 21(1):9-16. PubMed ID: 10652146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens.
    Puvanesarajah V; Schell FM; Stacey G; Douglas CJ; Nester EW
    J Bacteriol; 1985 Oct; 164(1):102-6. PubMed ID: 4044517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.