These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3968040)

  • 1. Role of ubiquinone in hydrogen-dependent electron transport in Rhizobium japonicum.
    O'Brian MR; Maier RJ
    J Bacteriol; 1985 Feb; 161(2):775-7. PubMed ID: 3968040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transport components involved in hydrogen oxidation in free-living Rhizobium japonicum.
    O'Brian MR; Maier RJ
    J Bacteriol; 1982 Oct; 152(1):422-30. PubMed ID: 6288665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of cytochromes and a flavoprotein in hydrogen oxidation in Rhizobium japonicum bacteroids.
    O'Brian MR; Maier RJ
    J Bacteriol; 1983 Aug; 155(2):481-7. PubMed ID: 6874637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-ubiquinone oxidoreductase activity by the Bradyrhizobium japonicum membrane-bound hydrogenase.
    Ferber DM; Maier RJ
    FEMS Microbiol Lett; 1993 Jul; 110(3):257-64. PubMed ID: 8354459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids.
    Eisbrenner G; Evans HJ
    J Bacteriol; 1982 Mar; 149(3):1005-12. PubMed ID: 6277845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the H2-oxidizing activities of Alcaligenes eutrophus H16 membranes with artificial electron acceptors, respiratory inhibitors and redox-spectroscopic procedures.
    Podzuweit HG; Arp DJ; Schlegel HG; Schneider K
    Biochimie; 1986 Jan; 68(1):103-11. PubMed ID: 3089303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of inhibition of the respiratory chain by 2-heptyl-4-hydroxyquinoline-N-oxide.
    Izzo G; Guerrieri F; Papa S
    FEBS Lett; 1978 Sep; 93(2):320-2. PubMed ID: 710584
    [No Abstract]   [Full Text] [Related]  

  • 8. Hydrogen-oxidizing electron transport components in nitrogen-fixing Azotobacter vinelandii.
    Wong TY; Maier RJ
    J Bacteriol; 1984 Jul; 159(1):348-52. PubMed ID: 6735984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncompetitive substrate inhibition and noncompetitive inhibition by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-nonyl-4-hydroxyquinoline-N-oxide (NQNO) is observed for the cytochrome bo3 complex: implications for a Q(H2)-loop proton translocation mechanism.
    Musser SM; Stowell MH; Lee HK; Rumbley JN; Chan SI
    Biochemistry; 1997 Jan; 36(4):894-902. PubMed ID: 9020789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii.
    Pihl TD; Black LK; Schulman BA; Maier RJ
    J Bacteriol; 1992 Jan; 174(1):137-43. PubMed ID: 1309514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex.
    Richardson DJ; McEwan AG; Page MD; Jackson JB; Ferguson SJ
    Eur J Biochem; 1990 Nov; 194(1):263-70. PubMed ID: 2174775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP
    Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate of ubiquinone oxidation in electron transport particles reduced by succinate.
    Storey BT
    Arch Biochem Biophys; 1968 Aug; 126(2):585-92. PubMed ID: 4299683
    [No Abstract]   [Full Text] [Related]  

  • 15. On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri.
    Kröger A; Dadák V; Klingenberg M; Diemer F
    Eur J Biochem; 1971 Aug; 21(3):322-33. PubMed ID: 4328123
    [No Abstract]   [Full Text] [Related]  

  • 16. Binding and inhibitory effect of 2-heptyl-4-hydroxyquinoline-N-oxide in the presence of ubiquinone-3 in Saccharomyces cerevisiae.
    Burger G
    Eur J Biochem; 1980 May; 106(2):661-5. PubMed ID: 6249582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the redox potentials of ubiquinone and cytochrome b in the respiratory chain.
    Urban PF; Klingenberg M
    Eur J Biochem; 1969 Jul; 9(4):519-25. PubMed ID: 5806500
    [No Abstract]   [Full Text] [Related]  

  • 18. Membrane-bound respiratory of Spirillum itersonii.
    Dailey HA
    J Bacteriol; 1976 Sep; 127(3):1286-91. PubMed ID: 182674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of ubiquinone in the electron transport system of Pseudomonas aeruginosa grown aerobically.
    Matsushita K; Yamada M; Shinagawa E; Adachi O; Ameyama M
    J Biochem; 1980 Sep; 88(3):757-64. PubMed ID: 6774977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of cytochrome o in hydrogen uptake constitutive mutants of Rhizobium japonicum.
    O'Brian MR; Maier RJ
    J Bacteriol; 1985 Feb; 161(2):507-14. PubMed ID: 3968033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.