BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3968080)

  • 21. Tyrosine modification of glucose dehydrogenase from Bacillus megaterium. Effect of tetranitromethane on the enzyme in the tetrameric and monomeric state.
    Fröschle M; Ulmer W; Jany KD
    Eur J Biochem; 1984 Aug; 142(3):533-40. PubMed ID: 6432532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Modification of micrococcal histidine decarboxylase with tetranitromethane].
    Gonchar NA; Grebenshchikova OG; Zaslavskaia NV
    Vopr Med Khim; 1989; 35(3):112-6. PubMed ID: 2773374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification of NADPH-cytochrome P-450 reductase from microsomal fraction of rat testes, and its chemical modification by tetranitromethane.
    Inano H; Tamaoki B
    J Steroid Biochem; 1986 Jul; 25(1):21-8. PubMed ID: 3091939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional modifications of aspartate transcarbamylase induced by nitration with tetranitromethane.
    Landfear SM; Lipscomb WN; Evans DR
    J Biol Chem; 1978 Jun; 253(11):3988-96. PubMed ID: 348700
    [No Abstract]   [Full Text] [Related]  

  • 25. Nitration of functional tyrosyl residues in rabbit muscle phosphorylase B.
    Prisco G; Zito R; Cacace MG
    Biochem Biophys Res Commun; 1977 Jun; 76(3):850-4. PubMed ID: 901449
    [No Abstract]   [Full Text] [Related]  

  • 26. [Localization of tetranitromethane-modified tyrosine residues in the polypeptide chain of cholesterol-hydroxylating cytochrome P-450].
    Pikuleva IA; Lapko AG; Akhrem AA; Usanov SA; Chashchin VL
    Bioorg Khim; 1987 Jun; 13(6):739-47. PubMed ID: 3675633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of modification of the tyrosine residues of bacteriorhodopsin with tetranitromethane.
    Campos-Cavieres M; Moore TA; Perham RN
    Biochem J; 1979 Apr; 179(1):233-8. PubMed ID: 475758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical modification of adrenocortical cytochrome P-450scc with tetranitromethane.
    Usanov SA; Pikuleva IA; Chashchin VL; Akhrem AA
    Biochim Biophys Acta; 1984 Nov; 790(3):259-67. PubMed ID: 6487639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exposed tyrosine residues of lambda cro repressor protein evidenced by nitration and photo CIDNP experiments.
    Shirakawa M; Kawata Y; Lee SJ; Akutsu H; Sakiyama F; Kyogoku Y
    J Biochem; 1985 Sep; 98(3):799-805. PubMed ID: 3910646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Reaction between tetranitromethane and deoxyribonucleoproteins].
    Ptitsyn LA; Chepyzheva MA; Kolomiĭtseva GIa; Senchenkov EP
    Biokhimiia; 1978 Oct; 43(10):1823-9. PubMed ID: 102370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of the ligand trans to thiolate in cytochrome P-450 LM2 by chemical modification.
    Jänig GR; Dettmer R; Usanov SA; Ruckpaul K
    FEBS Lett; 1983 Aug; 159(1-2):58-62. PubMed ID: 6873303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploration of the binding sites of acetylcholinesterase with protein-modifying reagents.
    O'Brien RD; Test KE
    Arch Biochem Biophys; 1978 Apr; 187(1):113-20. PubMed ID: 566084
    [No Abstract]   [Full Text] [Related]  

  • 33. The reaction of bovine alpha-thrombin with tetranitromethane. Characterization of the modified protein.
    Lundblad RL; Noyes CM; Featherstone GL; Harrison JH; Jenzano JW
    J Biol Chem; 1988 Mar; 263(8):3729-34. PubMed ID: 3346219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Essential tyrosyl residues of human placental alkaline phosphatase.
    Chang TC; Chang GG
    Int J Biochem; 1984; 16(12):1237-43. PubMed ID: 6530011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of an essential tyrosine residue in nitroalkane oxidase by modification with tetranitromethane.
    Gadda G; Banerjee A; Fitzpatrick PF
    Biochemistry; 2000 Feb; 39(5):1162-8. PubMed ID: 10653664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical modification of neutral protease from Bacillus subtilis var. amylosacchariticus with tetranitromethane: assignment of tyrosyl residues nitrated.
    Kobayashi R; Kanatani A; Yoshimoto T; Tsuru D
    J Biochem; 1989 Dec; 106(6):1110-3. PubMed ID: 2628428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of tyrosine residues in the function of bacteriorhodopsin. Specific nitration of tyrosine 26.
    Lemke HD; Oesterhelt D
    Eur J Biochem; 1981 Apr; 115(3):595-604. PubMed ID: 7016540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of inhibition of acetylcholinesterase in the presence of acetonitrile.
    Pietsch M; Christian L; Inhester T; Petzold S; Gütschow M
    FEBS J; 2009 Apr; 276(8):2292-307. PubMed ID: 19292865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inactivation of beta-fucosidase by iodine, N-acetylimidazole and tetranitromethane. Evidence for the existence of essential tyrosine residues.
    Colas B
    Biochim Biophys Acta; 1981 Feb; 657(2):535-8. PubMed ID: 7213761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
    Szegletes T; Mallender WD; Thomas PJ; Rosenberry TL
    Biochemistry; 1999 Jan; 38(1):122-33. PubMed ID: 9890890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.