These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3968253)

  • 1. Development of early brainstem projections to the tail spinal cord of Xenopus.
    Nordlander RH; Baden ST; Ryba TM
    J Comp Neurol; 1985 Jan; 231(4):519-29. PubMed ID: 3968253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord development in anuran larvae: II. Ascending and descending pathways.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):395-408. PubMed ID: 6982288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mormyrid brainstem. I. Distribution of brainstem neurones projecting to the spinal cord in Gnathonemus petersii. An HRP study.
    Hlavacek M; Tahar M; Libouban S; Szabo T
    J Hirnforsch; 1984; 25(6):603-15. PubMed ID: 6526990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(4):385-418. PubMed ID: 4067279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis.
    van Mier P; ten Donkelaar HJ
    Anat Embryol (Berl); 1984; 170(3):295-306. PubMed ID: 6335361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An HRP study in the cat of brainstem projections to the spinal cord, with particular reference to sacral afferents.
    Suzuki K
    Arch Ital Biol; 1985 Jul; 123(3):155-70. PubMed ID: 4083964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reevaluation of projections from the mesencephalic trigeminal nucleus to the medulla and spinal cord: new projections. a combined retrograde and anterograde horseradish peroxidase study.
    Ruggiero DA; Ross CA; Kumada M; Reis DJ
    J Comp Neurol; 1982 Apr; 206(3):278-92. PubMed ID: 7085934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems.
    Newman DB; Cruce WL; Bruce LL
    J Comp Neurol; 1983 Mar; 215(1):17-32. PubMed ID: 6853763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(2):187-226. PubMed ID: 2410489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain neurons which project to the spinal cord in young larvae of the zebrafish.
    Kimmel CB; Powell SL; Metcalfe WK
    J Comp Neurol; 1982 Feb; 205(2):112-27. PubMed ID: 7076887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus.
    Cruce WL; Newman DB
    J Comp Neurol; 1981 May; 198(2):185-207. PubMed ID: 7240441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The onset and development of descending pathways to the spinal cord in the chick embryo.
    Okado N; Oppenheim RW
    J Comp Neurol; 1985 Feb; 232(2):143-61. PubMed ID: 3973087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of the descending spinal projections in petromyzontid and myxinoid agnathans.
    Ronan M
    J Comp Neurol; 1989 Mar; 281(1):54-68. PubMed ID: 2925902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamorphosis of spinal-projecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy.
    Swain GP; Ayers J; Selzer ME
    J Comp Neurol; 1995 Nov; 362(4):453-67. PubMed ID: 8636461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of reticulospinal neurons in the chicken by retrograde transport of WGA-HRP.
    Hassouna E; Yamamoto M; Imagawa T; Uehara M
    Tissue Cell; 2001 Apr; 33(2):141-7. PubMed ID: 11392666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Descending pathways to the spinal cord in the himé salmon (landlocked red salmon, Oncorhynchus nerka).
    Oka Y; Satou M; Ueda K
    J Comp Neurol; 1986 Dec; 254(1):91-103. PubMed ID: 3805356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ascending input to the midbrain periaqueductal gray of the primate.
    Mantyh PW
    J Comp Neurol; 1982 Oct; 211(1):50-64. PubMed ID: 7174883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional specificity of developing reticulospinal, vestibulospinal, and vestibulo-ocular projections in the chicken embryo.
    Glover JC; Petursdottir G
    J Neurobiol; 1991 Jun; 22(4):353-76. PubMed ID: 1890420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the vestibular apparatus and central vestibular connections in a wallaby (Macropus eugenii).
    McCluskey SU; Marotte LR; Ashwell KW
    Brain Behav Evol; 2008; 71(4):271-86. PubMed ID: 18431054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos.
    Roberts A; Dale N; Ottersen OP; Storm-Mathisen J
    J Comp Neurol; 1987 Jul; 261(3):435-49. PubMed ID: 3611420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.