These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3968453)

  • 1. Population dynamics of ingested Clostridium difficile in the gastrointestinal tract of the Syrian hamster.
    Wilson KH; Sheagren JN; Freter R
    J Infect Dis; 1985 Feb; 151(2):355-61. PubMed ID: 3968453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of Clostridium difficile and Escherichia coli with microfloras in continuous-flow cultures and gnotobiotic mice.
    Wilson KH; Freter R
    Infect Immun; 1986 Nov; 54(2):354-8. PubMed ID: 3533778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridium difficile--a spectrum of virulence and analysis of putative virulence determinants in the hamster model of antibiotic-associated colitis.
    Borriello SP; Ketley JM; Mitchell TJ; Barclay FE; Welch AR; Price AB; Stephen J
    J Med Microbiol; 1987 Aug; 24(1):53-64. PubMed ID: 3612744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of yogurt on clindamycin-induced Clostridium difficile colitis in hamsters.
    Kotz CM; Peterson LR; Moody JA; Savaiano DA; Levitt MD
    Dig Dis Sci; 1992 Jan; 37(1):129-32. PubMed ID: 1728517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oritavancin does not induce Clostridium difficile germination and toxin production in hamsters or a human gut model.
    Freeman J; Marquis M; Crowther GS; Todhunter SL; Fawley WN; Chilton CH; Moeck G; Lehoux D; Wilcox MH
    J Antimicrob Chemother; 2012 Dec; 67(12):2919-26. PubMed ID: 22899803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium difficile typhlitis associated with cecal mucosal hyperplasia in Syrian hamsters.
    Ryden EB; Lipman NS; Taylor NS; Rose R; Fox JG
    Lab Anim Sci; 1991 Dec; 41(6):553-8. PubMed ID: 1667196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection.
    Freeman J; Baines SD; Jabes D; Wilcox MH
    J Antimicrob Chemother; 2005 Oct; 56(4):717-25. PubMed ID: 16143709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of Clostridium difficile by normal hamster cecal flora and prevention of antibiotic-associated cecitis.
    Wilson KH; Silva J; Fekety FR
    Infect Immun; 1981 Nov; 34(2):626-8. PubMed ID: 7309245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mucosal association by Clostridium difficile in the hamster gastrointestinal tract.
    Borriello SP; Welch AR; Barclay FE; Davies HA
    J Med Microbiol; 1988 Mar; 25(3):191-6. PubMed ID: 3346902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Escherichia coli translocation from the gastrointestinal tract by normal cecal flora in gnotobiotic or antibiotic-decontaminated mice.
    Berg RD
    Infect Immun; 1980 Sep; 29(3):1073-81. PubMed ID: 6448820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemiology of colitis induced by Clostridium difficile in hamsters: application of a bacteriophage and bacteriocin typing system.
    Hawkins CC; Buggy BP; Fekety R; Schaberg DR
    J Infect Dis; 1984 May; 149(5):775-80. PubMed ID: 6586860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Escherichia coli populations by a combination of indigenous clostridia and lactobacilli in gnotobiotic mice and continuous-flow cultures.
    Itoh K; Freter R
    Infect Immun; 1989 Feb; 57(2):559-65. PubMed ID: 2643576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gastrointestinal epithelium and its autochthonous bacterial flora.
    Savage DC; Dubos R; Schaedler RW
    J Exp Med; 1968 Jan; 127(1):67-76. PubMed ID: 4169441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of eight cephalosporins in hamster colitis model.
    Ebright JR; Fekety R; Silva J; Wilson KH
    Antimicrob Agents Chemother; 1981 Jun; 19(6):980-6. PubMed ID: 6973951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of vancomycin hydrochloride for treatment of Clostridium difficile enteritis in Syrian hamsters.
    Boss SM; Gries CL; Kirchner BK; Smith GD; Francis PC
    Lab Anim Sci; 1994 Feb; 44(1):31-7. PubMed ID: 8007657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Transfer of the cecal flora of the hamster to the germfree C3H mouse: use of this model to study the flora of the anti-Clostridium difficile barrier].
    Su WJ; Bourlioux P; Bournaud M; Besnier MO; Fourniat J
    Can J Microbiol; 1986 Feb; 32(2):132-6. PubMed ID: 3516351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vitro and in-vivo characterisation of resistance to colonisation with Clostridium difficile.
    Larson HE; Welch A
    J Med Microbiol; 1993 Feb; 38(2):103-8. PubMed ID: 8429534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes.
    Zachar Z; Savage DC
    Infect Immun; 1979 Jan; 23(1):168-74. PubMed ID: 106003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clindamycin-induced colitis.
    Fekety R; Silva J; Browne RA; Rifkin GD; Ebright JR
    Am J Clin Nutr; 1979 Jan; 32(1):244-50. PubMed ID: 760500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of aztreonam, cefoperazone, latamoxef and ceftazidime in the hamster colitis model.
    Weinberg DS; Fernandes PB; Kao CC; Clark JM; Bonner DP; Sykes RB
    J Antimicrob Chemother; 1986 Dec; 18(6):729-45. PubMed ID: 3546243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.