These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3969159)

  • 41. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of the rat's uncrossed retinotectal pathway and its relation to plasticity studies.
    Land PW; Lund RD
    Science; 1979 Aug; 205(4407):698-700. PubMed ID: 462177
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections.
    Chalupa LM
    Brain Res Rev; 2007 Oct; 55(2):228-36. PubMed ID: 17433447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temporary double representation in expanded ipsilateral retinocollicular projection of neonatally one-eye-removed rats.
    Fukuda Y; Hsiao CF; Sawai H
    Brain Res; 1985 Oct; 354(2):279-83. PubMed ID: 4052817
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of the lateral geniculate nucleus: interactions between retinal afferent, cytoarchitectonic, and glial cell process lamination in ferrets and tree shrews.
    Hutchins JB; Casagrande VA
    J Comp Neurol; 1990 Aug; 298(1):113-28. PubMed ID: 1698826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The development and restriction of the ipsilateral retinofugal projection in the chick.
    O'Leary DM; Gerfen CR; Cowan WM
    Brain Res; 1983 Oct; 312(1):93-109. PubMed ID: 6652510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RIM1/2 in retinal ganglion cells are required for the refinement of ipsilateral axons and eye-specific segregation.
    Assali A; Le Magueresse C; Bennis M; Nicol X; Gaspar P; Rebsam A
    Sci Rep; 2017 Jun; 7(1):3236. PubMed ID: 28607399
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Topographic projections of the retina and optic tectum upon the ventral lateral geniculate nucleus in the chick.
    Crossland WJ; Uchwat CJ
    J Comp Neurol; 1979 May; 185(1):87-106. PubMed ID: 429617
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse.
    Dräger UC
    Proc R Soc Lond B Biol Sci; 1985 Mar; 224(1234):57-77. PubMed ID: 2581263
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extensive recrossing of retinotectal axons after neonatal unilateral superior collicular lesions in hamster.
    Mooney RD; Klein BG; Szczepanik AM; Rhoades RW
    Brain Res; 1985 Apr; 351(2):297-313. PubMed ID: 3995353
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An aberrant crossed visual corticotectal pathway in albino rats.
    Mustari MJ; Lund RD
    Brain Res; 1976 Aug; 112(1):37-44. PubMed ID: 947492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of retinal afferents in regulating growth and shape of the lateral geniculate nucleus.
    Williams AL; Reese BE; Jeffery G
    J Comp Neurol; 2002 Apr; 445(3):269-77. PubMed ID: 11920706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of monocular enucleation at different stages of development on the uncrossed retinocollicular projection in the opossum.
    Méndez-Otero R; Rocha-Miranda CE; Carvalho-Dias E
    Brain Res; 1986 Jun; 392(1-2):101-8. PubMed ID: 3708370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of synapses formed by the aberrant, uncrossed retinogeniculate projection in the hamster after neonatal monocular enucleation.
    Campbell G; So KF; Lieberman AR
    Brain Res; 1985 Jul; 353(1):137-40. PubMed ID: 4027677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plastic and degenerative changes in visual centers.
    Fifková E
    Adv Psychobiol; 1974; 2():59-131. PubMed ID: 4451189
    [No Abstract]   [Full Text] [Related]  

  • 56. The topography of aberrant ipsilateral retinogeniculate projections following neonatal ablation of the superior colliculus in rats.
    Reese BE
    Brain Res; 1985 Oct; 354(2):288-92. PubMed ID: 4052818
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity.
    Demas J; Sagdullaev BT; Green E; Jaubert-Miazza L; McCall MA; Gregg RG; Wong RO; Guido W
    Neuron; 2006 Apr; 50(2):247-59. PubMed ID: 16630836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control of cell number in the developing visual system. I. Effects of monocular enucleation.
    Finlay BL; Sengelaub DR; Berian CA
    Brain Res; 1986 Jul; 393(1):1-10. PubMed ID: 3730886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus.
    Carpenter P; Sefton AJ; Dreher B; Lim WL
    J Comp Neurol; 1986 Sep; 251(2):240-59. PubMed ID: 3782500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells.
    Vo BQ; Bloom AJ; Culican SM
    Vis Neurosci; 2011 Mar; 28(2):175-81. PubMed ID: 21324225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.