These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 3969511)
21. Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Williamson JR; Schaffer SW; Ford C; Safer B Circulation; 1976 Mar; 53(3 Suppl):I3-14. PubMed ID: 3293 [TBL] [Abstract][Full Text] [Related]
22. Effect of redox potential on protein degradation in perfused rat heart. Chua BH; Kleinhans BJ Am J Physiol; 1985 Jun; 248(6 Pt 1):E726-31. PubMed ID: 3890558 [TBL] [Abstract][Full Text] [Related]
23. Cyclic GMP affects redox state and improves energy charge of ischaemic Langendorff-perfused rat heart. Laustiola K Acta Pharmacol Toxicol (Copenh); 1985 Feb; 56(2):139-43. PubMed ID: 2986410 [TBL] [Abstract][Full Text] [Related]
24. A comparison of different carbohydrates as substrates for the isolated working heart. Mahoney JR; Sako EY; Seymour KM; Marquardt CA; Foker JE J Surg Res; 1989 Dec; 47(6):530-4. PubMed ID: 2511381 [TBL] [Abstract][Full Text] [Related]
25. Substrate competition in postischemic myocardium. Effect of substrate availability during reperfusion on metabolic and contractile recovery in isolated rat hearts. Tamm C; Benzi R; Papageorgiou I; Tardy I; Lerch R Circ Res; 1994 Dec; 75(6):1103-12. PubMed ID: 7955147 [TBL] [Abstract][Full Text] [Related]
26. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Weinberg EO; Schoen FJ; George D; Kagaya Y; Douglas PS; Litwin SE; Schunkert H; Benedict CR; Lorell BH Circulation; 1994 Sep; 90(3):1410-22. PubMed ID: 8087951 [TBL] [Abstract][Full Text] [Related]
27. Mechanism of impaired energy metabolism during acidosis: role of oxidative metabolism. Suleymanlar G; Zhou HZ; McCormack M; Elkins N; Kucera R; Reiss OK; Shapiro JI Am J Physiol; 1992 Jun; 262(6 Pt 2):H1818-22. PubMed ID: 1621841 [TBL] [Abstract][Full Text] [Related]
28. Oxygen consumption is less in rat hearts arrested by low calcium than by high potassium at fixed flow. Burkhoff D; Kalil-Filho R; Gerstenblith G Am J Physiol; 1990 Oct; 259(4 Pt 2):H1142-7. PubMed ID: 2221122 [TBL] [Abstract][Full Text] [Related]
29. Energy metabolism in the perfused, arrested rabbit heart. Kotsanas G; Gibbs CL; Wendt IR J Mol Cell Cardiol; 1989 Feb; 21(2):211-21. PubMed ID: 2746650 [TBL] [Abstract][Full Text] [Related]
30. In vivo profile of myocardial energy metabolism of pressure-overloaded rat. Takeo S; Tanonaka K; Aoki M; Nakai Y; Sanbe A; Shizume Y; Tanaka C; Miyake K; Hirai K; Ueda N Jpn Heart J; 1993 May; 34(3):313-31. PubMed ID: 8411637 [TBL] [Abstract][Full Text] [Related]
31. Energy levels at systole vs. diastole in normal hamster hearts vs. myopathic hamster hearts. Sievers R; Parmley WW; James T; Wikman-Coffelt J Circ Res; 1983 Dec; 53(6):759-66. PubMed ID: 6640862 [TBL] [Abstract][Full Text] [Related]
32. Effect of perfusate Ca2+ on the relation between metabolism and mechanical performance in the rat heart. Snow TR; Rubanyi G; Dora T; Dora E; Kovach AG Can J Physiol Pharmacol; 1980 May; 58(5):570-3. PubMed ID: 7417885 [TBL] [Abstract][Full Text] [Related]
33. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Neely JR; Denton RM; England PJ; Randle PJ Biochem J; 1972 Jun; 128(1):147-59. PubMed ID: 5085551 [TBL] [Abstract][Full Text] [Related]
34. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart. Rubányi G; Kovách AG Acta Physiol Acad Sci Hung; 1980; 55(4):335-43. PubMed ID: 7468250 [TBL] [Abstract][Full Text] [Related]
35. Substrate regulation of the nucleotide pool during regional ischaemia and reperfusion in an isolated rat heart preparation: a phosphorus-31 magnetic resonance spectroscopy analysis. Camacho SA; Parmley WW; James TL; Abe H; Wu ST; Botvinick EH; Watters TA; Schiller N; Sievers R; Wikman-Coffelt J Cardiovasc Res; 1988 Mar; 22(3):193-203. PubMed ID: 3167943 [TBL] [Abstract][Full Text] [Related]
36. Continuous warm versus intermittent cold cardioplegic infusion: a comparison of energy metabolism, sodium-potassium adenosine triphosphatase activity, and postischemic functional recovery in the blood-perfused rat heart. Qiu Y; Galiñanes M; Haddock PS; Hcarse DJ J Thorac Cardiovasc Surg; 1996 Sep; 112(3):797-805. PubMed ID: 8800170 [TBL] [Abstract][Full Text] [Related]
37. Pyruvate reverses fatty-acid-induced depression of ventricular function and calcium overload after hypothermia in guinea pig hearts. Aasum E; Larsen TS Cardiovasc Res; 1997 Feb; 33(2):370-7. PubMed ID: 9074701 [TBL] [Abstract][Full Text] [Related]
38. Performance of the neonatal pig heart subjected to oxygen insufficiency. Uy R; Tede N; Ross-Ascuitto N; Ascuitto R Biol Neonate; 2004; 85(1):42-50. PubMed ID: 14631166 [TBL] [Abstract][Full Text] [Related]
39. Effect of prostaglandins I2 (prostacyclin) and F2 alpha on function, energy metabolism, and calcium uptake in ischaemic/reperfused hearts. Karmazyn M; Tani M; Neely JR Cardiovasc Res; 1993 Mar; 27(3):396-402. PubMed ID: 8490938 [TBL] [Abstract][Full Text] [Related]
40. cAMP-mediated c-fos expression in pressure-overloaded acceleration of protein synthesis in adult rat heart. Osaki J; Haneda T; Sakai H; Kikuchi K Cardiovasc Res; 1997 Mar; 33(3):631-40. PubMed ID: 9093533 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]