These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3970208)

  • 1. Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin.
    Edwards RM
    Am J Physiol; 1985 Feb; 248(2 Pt 2):F183-9. PubMed ID: 3970208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels.
    Edwards RM
    Am J Physiol; 1983 May; 244(5):F526-34. PubMed ID: 6846541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles.
    Edwards RM
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F779-84. PubMed ID: 3923841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors.
    Edwards RM; Trizna W
    J Am Soc Nephrol; 1993 Nov; 4(5):1127-32. PubMed ID: 7508276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of effect of atriopeptin II on rabbit glomerular arterioles in vitro.
    Edwards RM; Weidley EF
    Am J Physiol; 1987 Feb; 252(2 Pt 2):F317-21. PubMed ID: 3028173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes.
    Schnackenberg CG; Wilcox CS
    Kidney Int; 2001 May; 59(5):1859-64. PubMed ID: 11318957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glomerular autacoids stimulated by bradykinin regulate efferent arteriole tone.
    Ren Y; Garvin JL; Falck JR; Renduchintala KV; Carretero OA
    Kidney Int; 2003 Mar; 63(3):987-93. PubMed ID: 12631079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of NG-nitro-L-arginine on isolated rabbit afferent arterioles.
    Tamaki T; Hasui K; Aki Y; Kimura S; Abe Y
    Jpn J Pharmacol; 1993 Jul; 62(3):231-7. PubMed ID: 8411772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of renal autoregulation in the split hydronephrotic kidney of rats.
    Steinhausen M; Blum M; Fleming JT; Holz FG; Parekh N; Wiegman DL
    Kidney Int; 1989 May; 35(5):1151-60. PubMed ID: 2770100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic effect of bradykinin on rabbit afferent arterioles.
    Yu H; Carretero OA; Juncos LA; Garvin JL
    Hypertension; 1998 Aug; 32(2):287-92. PubMed ID: 9719056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal microvascular effects of vasopressin and vasopressin antagonists.
    Edwards RM; Trizna W; Kinter LB
    Am J Physiol; 1989 Feb; 256(2 Pt 2):F274-8. PubMed ID: 2916660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of fetal rabbit ductus arteriosus to bradykinin: role of nitric oxide, prostaglandins, and bradykinin receptors.
    Bateson EA; Schulz R; Olley PM
    Pediatr Res; 1999 Apr; 45(4 Pt 1):568-74. PubMed ID: 10203150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced acetylcholine-induced dilation in afferent arterioles in simvastatin-fed rats.
    Inman SR; Caprio TW; Drummond E; Mueller M; Entenman K
    Vascul Pharmacol; 2006 Jan; 44(1):17-21. PubMed ID: 16290053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparable effects of arteriolar and capillary stimuli on blood flow in rat skeletal muscle.
    Mitchell D; Yu J; Tyml K
    Microvasc Res; 1997 Jan; 53(1):22-32. PubMed ID: 9056473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine stimulates cAMP production in canine afferent arterioles via DA1 receptors.
    Tamaki T; Hura CE; Kunau RT
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H626-9. PubMed ID: 2538080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal microvascular effects of endothelin.
    Edwards RM; Trizna W; Ohlstein EH
    Am J Physiol; 1990 Aug; 259(2 Pt 2):F217-21. PubMed ID: 2201203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation of renal arterioles by parathyroid hormone and parathyroid hormone-related protein.
    Trizna W; Edwards RM
    Pharmacology; 1991; 42(2):91-6. PubMed ID: 2062876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles.
    Wang D; Borrego-Conde LJ; Falck JR; Sharma KK; Wilcox CS; Umans JG
    Kidney Int; 2003 Jun; 63(6):2187-93. PubMed ID: 12753306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ACh on electrical and mechanical activity in guinea pig coronary arteries.
    Keef KD; Bowen SM
    Am J Physiol; 1989 Oct; 257(4 Pt 2):H1096-103. PubMed ID: 2801972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.