These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 3970234)

  • 21. Cardiovascular responses during one- and two-legged exercise in middle-aged men.
    Magnusson G; Kaijser L; Isberg B; Saltin B
    Acta Physiol Scand; 1994 Apr; 150(4):353-62. PubMed ID: 8036904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Red blood cells do not contribute to removal of K+ released from exhaustively working forearm muscle.
    Maassen N; Foerster M; Mairbäurl H
    J Appl Physiol (1985); 1998 Jul; 85(1):326-32. PubMed ID: 9655793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Potassium distribution and glycogen metabolism under muscle load in rats. II. Changes in muscle and liver lactate, glycogen and water].
    Vajiíková H
    Bratisl Lek Listy; 1975 Jan; 63(1):72-8. PubMed ID: 1116029
    [No Abstract]   [Full Text] [Related]  

  • 24. Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue.
    Mohr M; Nordsborg N; Nielsen JJ; Pedersen LD; Fischer C; Krustrup P; Bangsbo J
    Pflugers Arch; 2004 Jul; 448(4):452-6. PubMed ID: 15048574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance and muscle metabolite changes in exercise with repeated maximal dynamic contractions.
    Karlsson J; Piehl K; Knuttgen HG
    Int J Sports Med; 1981 May; 2(2):110-3. PubMed ID: 7333740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of exercise intensity on potassium balance in muscle and blood of man.
    Vøllestad NK; Hallén J; Sejersted OM
    J Physiol; 1994 Mar; 475(2):359-68. PubMed ID: 8021842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle ammonia metabolism during isometric contraction in humans.
    Katz A; Sahlin K; Henriksson J
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C834-40. PubMed ID: 2872818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of alkalosis on muscle ions at rest and with intense exercise.
    Lindinger MI; Heigenhauser GJ; Spriet LL
    Can J Physiol Pharmacol; 1990 Jul; 68(7):820-9. PubMed ID: 2383797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lactate content and pH in muscle obtained after dynamic exercise.
    Sahlin K; Harris RC; Nylind B; Hultman E
    Pflugers Arch; 1976 Dec; 367(2):143-9. PubMed ID: 13343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of diet on muscle glycogen and blood glucose utilization during a short-term exercise in man.
    Jansson E; Kaijser L
    Acta Physiol Scand; 1982 Jul; 115(3):341-7. PubMed ID: 7180530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.
    Sejersted OM; Sjøgaard G
    Physiol Rev; 2000 Oct; 80(4):1411-81. PubMed ID: 11015618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
    Juel C; Klarskov C; Nielsen JJ; Krustrup P; Mohr M; Bangsbo J
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E245-51. PubMed ID: 14559724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of diet on the utilization of blood-borne and intramuscular substrates during exercise in man.
    Jansson E; Kaijser L
    Acta Physiol Scand; 1982 May; 115(1):19-30. PubMed ID: 7136801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potassium and lactate uptake by noncontracting tissue during strenuous exercise.
    Schott HC; Bohart GV; Eberhart SW
    Equine Vet J Suppl; 2002 Sep; (34):532-8. PubMed ID: 12405746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Buffer capacity and lactate accumulation in skeletal muscle of trained and untrained men.
    Sahlin K; Henriksson J
    Acta Physiol Scand; 1984 Nov; 122(3):331-9. PubMed ID: 6516884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Erythrocyte ion regulation across inactive muscle during leg exercise.
    McKelvie RS; Lindinger MI; Jones NL; Heigenhauser GJ
    Can J Physiol Pharmacol; 1992 Dec; 70(12):1625-33. PubMed ID: 1301241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycogen breakdown and lactate accumulation during high-intensity cycling.
    Medbø JI
    Acta Physiol Scand; 1993 Sep; 149(1):85-9. PubMed ID: 8237426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitation of progressive muscle fatigue during dynamic leg exercise in humans.
    Fulco CS; Lewis SF; Frykman PN; Boushel R; Smith S; Harman EA; Cymerman A; Pandolf KB
    J Appl Physiol (1985); 1995 Dec; 79(6):2154-62. PubMed ID: 8847286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lactate elimination and glycogen resynthesis after intense bicycling.
    Medbø JI; Jebens E; Noddeland H; Hanem S; Toska K
    Scand J Clin Lab Invest; 2006; 66(3):211-26. PubMed ID: 16714250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.
    Bangsbo J; Graham T; Johansen L; Saltin B
    J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.