BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3970911)

  • 1. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes.
    de Bruijne AW; Vreeburg H; van Steveninck J
    Biochim Biophys Acta; 1985 Feb; 812(3):841-4. PubMed ID: 3970911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system.
    De Bruijne AW; Vreeburg H; Van Steveninck J
    Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter.
    Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP
    J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rabbit erythrocyte membrane protein associated with L-lactate transport.
    Jennings ML; Adams-Lackey M
    J Biol Chem; 1982 Nov; 257(21):12866-71. PubMed ID: 7130184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinetics of transport of lactate and pyruvate into isolated cardiac myocytes from guinea pig. Kinetic evidence for the presence of a carrier distinct from that in erythrocytes and hepatocytes.
    Poole RC; Halestrap AP; Price SJ; Levi AJ
    Biochem J; 1989 Dec; 264(2):409-18. PubMed ID: 2604725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF.
    Carpenter L; Halestrap AP
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):751-60. PubMed ID: 7818477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carrier-mediated uptake of lactate in rat hepatocytes. Effects of pH and possible mechanisms for L-lactate transport.
    Fafournoux P; Demigné C; Rémésy C
    J Biol Chem; 1985 Jan; 260(1):292-9. PubMed ID: 3965451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate and inhibitor specificity of the lactate carrier of human neutrophils.
    Simchowitz L; Vogt SK
    J Membr Biol; 1993 Jan; 131(1):23-34. PubMed ID: 8433351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Elliott JL; Saliba KJ; Kirk K
    Biochem J; 2001 May; 355(Pt 3):733-9. PubMed ID: 11311136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of lactate transport in human erythrocytes.
    Dubinsky WP; Racker E
    J Membr Biol; 1978 Dec; 44(1):25-36. PubMed ID: 32398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis.
    Juel C
    Acta Physiol Scand; 1996 Mar; 156(3):369-74. PubMed ID: 8729697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties.
    Deuticke B; Beyer E; Forst B
    Biochim Biophys Acta; 1982 Jan; 684(1):96-110. PubMed ID: 7055558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi.
    Wang X; Levi AJ; Halestrap AP
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1759-69. PubMed ID: 7977806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle.
    Manning Fox JE; Meredith D; Halestrap AP
    J Physiol; 2000 Dec; 529 Pt 2(Pt 2):285-93. PubMed ID: 11101640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes.
    Bröer S; Bröer A; Schneider HP; Stegen C; Halestrap AP; Deitmer JW
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):529-35. PubMed ID: 10417314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes.
    Edlund GL; Halestrap AP
    Biochem J; 1988 Jan; 249(1):117-26. PubMed ID: 3342001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of lactate in Plasmodium falciparum-infected human erythrocytes.
    Kanaani J; Ginsburg H
    J Cell Physiol; 1991 Dec; 149(3):469-76. PubMed ID: 1660483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.