These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 3970972)

  • 1. Reduction potential of iron in transferrin.
    Harris DC; Rinehart AL; Hereld D; Schwartz RW; Burke FP; Salvador AP
    Biochim Biophys Acta; 1985 Mar; 838(3):295-301. PubMed ID: 3970972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The presence of a reducible disulfide bond in milk xanthine oxidase.
    Hille R; Massey V
    J Biol Chem; 1982 Aug; 257(15):8898-901. PubMed ID: 6284747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spectroelectrochemical determination of the reduction potential of diferric serum transferrin.
    Kretchmar SA; Reyes ZE; Raymond KN
    Biochim Biophys Acta; 1988 Aug; 956(1):85-94. PubMed ID: 3408739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox potential of dithionite and SO-2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase.
    Mayhew SG
    Eur J Biochem; 1978 Apr; 85(2):535-47. PubMed ID: 648533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetry and constant-potential coulometry determinations of transferrin-bound iron, total iron-binding capacity, and total iron in serum containing iron-dextran, with use of sodium dithionite and alumina columns.
    Jacobs JC; Alexander NM
    Clin Chem; 1990 Oct; 36(10):1803-7. PubMed ID: 2208657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies on the reduction of iron(III)deuteroporphyrin--human serum albumin complex with dithionite ion.
    Chu AH; Williams TJ
    Arch Biochem Biophys; 1984 Oct; 234(1):129-37. PubMed ID: 6548352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of the lipocalin type heme containing protein nitrophorin -- sensitivity of the fold-stabilizing cysteine disulfides toward routine heme-iron reduction.
    Knipp M; Taing JJ; He C
    J Inorg Biochem; 2011 Nov; 105(11):1405-12. PubMed ID: 21955842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel microperoxidase activity: methyl viologen-linked nitrite reducing activity of microperoxidase.
    Suruga K; Murakami K; Taniyama Y; Hama T; Chida H; Satoh T; Yamada S; Hakamata W; Kawachi R; Isogai Y; Nishio T; Oku T
    Biochem Biophys Res Commun; 2004 Mar; 315(4):815-22. PubMed ID: 14985085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthranilate-promoted iron uptake in Rhizobium leguminosarum.
    Rioux CR; Jordan DC; Rattray JB
    Arch Biochem Biophys; 1986 Jul; 248(1):183-9. PubMed ID: 3729414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reduction and release of iron from Fe3+ .transferrin.CO3(2-).
    Kojima N; Bates GW
    J Biol Chem; 1979 Sep; 254(18):8847-54. PubMed ID: 479164
    [No Abstract]   [Full Text] [Related]  

  • 11. The influence of inorganic anions on the formation and stability of Fe3+-transferrin-anion complexes.
    Foley AA; Bates GW
    Biochim Biophys Acta; 1988 May; 965(2-3):154-62. PubMed ID: 2835112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in Fe3+/Fe2+ ratio and iron-induced oxidative stress in Eales disease and presence of ferrous iron in circulating transferrin.
    Selvi R; Angayarkanni N; Bharathselvi M; Sivaramakrishna R; Anisha T; Jyotirmoy B; Vasanthi B
    Curr Eye Res; 2007; 32(7-8):677-83. PubMed ID: 17852192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equivalence of the two sites of human transferrin upon reduction with dithionite.
    Harris DC; Haroutunian PV; Gutmann SM
    Br J Haematol; 1977 Oct; 37(2):302-3. PubMed ID: 603763
    [No Abstract]   [Full Text] [Related]  

  • 14. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications.
    Anderson ME; Lindahl PA
    Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex-formation and reduction of ferric iron by 2-oxo-4-thiomethylbutyric acid, and the production of hydroxyl radicals.
    Winston GW; Eibschutz OM; Strekas T; Cederbaum AI
    Biochem J; 1986 Apr; 235(2):521-9. PubMed ID: 3741403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane transport of non-transferrin-bound iron by reticulocytes.
    Morgan EH
    Biochim Biophys Acta; 1988 Sep; 943(3):428-39. PubMed ID: 3415985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diferric transferrin reduction by K562 cells. A critical study.
    Bérczi A; Sizensky JA; Crane FL; Faulk WP
    Biochim Biophys Acta; 1991 Apr; 1073(3):562-70. PubMed ID: 2015280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Determination of iron with CentrifiChem System].
    Eisenwiener HG
    Z Klin Chem Klin Biochem; 1975 Jan; 13(1):21-4. PubMed ID: 1121896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactoferrin and transferrin: a comparative study.
    Aisen P; Leibman A
    Biochim Biophys Acta; 1972 Feb; 257(2):314-23. PubMed ID: 4336719
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.