BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3971031)

  • 1. [Rheological characteristics of the blood in long-term and quick adaptation to muscle loads].
    Levin VN; Murav'ev AV
    Biull Eksp Biol Med; 1985 Feb; 99(2):142-4. PubMed ID: 3971031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Dynamics of the amino acid composition of the blood during adaptation to muscular loads].
    Rusin VIa; Makarova VM
    Fiziol Zh SSSR Im I M Sechenova; 1986 Aug; 72(8):1138-42. PubMed ID: 3758425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of physical stress on rheological properties of blood].
    Boudová L; Cisarik F; Barácková M; Brandejský P
    Sb Lek; 1995; 96(2):111-20. PubMed ID: 8718794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The characteristics of the erythron reaction to dynamic muscle loads in the early postnatal period of rats].
    Nazarov SB; Gorozhanin LS; Vinogradova EA
    Fiziol Zh SSSR Im I M Sechenova; 1990 Nov; 76(11):1568-75. PubMed ID: 1964428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Rheological of blood and oxygen transport in long-term adaptation to muscular load].
    Murav'ev AV; Gushchin AG; Murav'ev AA
    Ross Fiziol Zh Im I M Sechenova; 2001 Jul; 87(7):895-900. PubMed ID: 11575122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of red cells and plasma to blood viscosity in preterm and full-term infants and adults.
    Linderkamp O; Versmold HT; Riegel KP; Betke K
    Pediatrics; 1984 Jul; 74(1):45-51. PubMed ID: 6204271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Variations of hematic viscosity due to water-electrolyte disorders induced by muscular stress].
    Cortinovis A; Crippa A; Belloni G; Marchetti G; Marozzi R
    Chir Ital; 1979 Oct; 31(5):893-908. PubMed ID: 540385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in erythrocyte rigidity and neonatal relative viscosity during the adaptation of the newborn to extrauterine life. Observations on term and premature newborns].
    Uberos-Fernández J; Muñoz-Hoyos A; Molina-Carbayo A; Ruiz-Cosano C; Valenzuela-Ruiz A; Molina-Font JA
    An Esp Pediatr; 1996 Mar; 44(3):262-6. PubMed ID: 8830603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite effects of in vitro lactate on erythrocyte deformability in athletes and untrained subjects.
    Connes P; Bouix D; Py G; Prefaut C; Mercier J; Brun JF; Caillaud C
    Clin Hemorheol Microcirc; 2004; 31(4):311-8. PubMed ID: 15567902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The paradox of hematocrit in exercise physiology: which is the "normal" range from an hemorheologist's viewpoint?
    Brun JF; Bouchahda C; Chaze D; Benhaddad AA; Micallef JP; Mercier J
    Clin Hemorheol Microcirc; 2000; 22(4):287-303. PubMed ID: 11081466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of long-term physical training on blood lipids, adrenal functional activity and the kinin system].
    Khomulo PS; Kadushkina NN; Zharova IP; Orletskaia IIu
    Fiziol Zh SSSR Im I M Sechenova; 1980 Feb; 66(2):274-8. PubMed ID: 7364127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole blood, plasma viscosity, and erythrocyte aggregation as a determining factor of competitiveness in standard bred trotters.
    Stoiber B; Zach C; Izay B; Windberger U
    Clin Hemorheol Microcirc; 2005; 32(1):31-41. PubMed ID: 15665424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of the adrenal and thyroid glands in changes in the blood amino acid composition during adaptation to muscle loads].
    Rusin VIa; Makarov VM
    Fiziol Zh SSSR Im I M Sechenova; 1988 Oct; 74(10):1479-83. PubMed ID: 3229528
    [No Abstract]   [Full Text] [Related]  

  • 14. [Hemorrheological changes in ischemic heart disease].
    Forconi S; Guerrini M; Pieragalli D; Acciavatti A; Del Bigo C; Galigani C; Di Perri T
    Ric Clin Lab; 1983; 13 Suppl 3():195-208. PubMed ID: 6672996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Correlation of the magnitude of voluntary muscle strength and the characteristics of the adaptation of skeletal muscle to force loads in women and men].
    Issurin VB; Sharobaĭko IV
    Fiziol Cheloveka; 1985; 11(1):17-22. PubMed ID: 3979707
    [No Abstract]   [Full Text] [Related]  

  • 16. [The effect of increasing loads on adaptation to muscular activity].
    Pyzhova VA
    Fiziol Zh SSSR Im I M Sechenova; 1973 Mar; 59(3):428-33. PubMed ID: 4359631
    [No Abstract]   [Full Text] [Related]  

  • 17. [Role of the thyroid gland in skeletal muscle adaptation to increased motor activity].
    Sééne TP; Alev KP; Tomson KE; Viru AA
    Fiziol Zh SSSR Im I M Sechenova; 1981 Feb; 67(2):299-305. PubMed ID: 6163666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of physical exercise on myoglobin and tropomyosin levels in skeletal muscles and myoglobin level in rat blood].
    Chaĭkovskiĭ VS; Basharina OB; Shaliapina IV; Rogozkin VA
    Vopr Med Khim; 1987; 33(4):79-83. PubMed ID: 3660746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematological and blood viscosity changes in tail-suspended rats.
    Saunders DK; Roberts AC; Aldrich KJ; Cuthbertson B
    Aviat Space Environ Med; 2002 Jul; 73(7):647-53. PubMed ID: 12137100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of prostacyclin on erythrocyte deformability and blood viscosity].
    Galanti G; Paoli G; Albanese B; Manescalchi PG
    Ric Clin Lab; 1983; 13 Suppl 3():445-50. PubMed ID: 6369495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.