These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3971156)

  • 1. Regional comparisons of brain glucose influx.
    LaManna JC; Harik SI
    Brain Res; 1985 Feb; 326(2):299-305. PubMed ID: 3971156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain.
    Cremer JE; Cunningham VJ; Seville MP
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):291-302. PubMed ID: 6874738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures.
    Folbergrová J; Ingvar M; Siesjö BK
    J Neurochem; 1981 Nov; 37(5):1228-38. PubMed ID: 7299397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat.
    Sarna GS; Bradbury MW; Cremer JE; Lai JC; Teal HM
    Brain Res; 1979 Jan; 160(1):69-83. PubMed ID: 758224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow and metabolism in heterotopic cerebellar grafts during hypoglycemia.
    Kiessling M; Mies G; Paschen W; Thilmann R; Detmar M; Hossmann KA
    Acta Neuropathol; 1988; 77(2):142-51. PubMed ID: 3227812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia.
    Choi IY; Lee SP; Kim SG; Gruetter R
    J Cereb Blood Flow Metab; 2001 Jun; 21(6):653-63. PubMed ID: 11488534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood-brain barrier transport of butanol and water relative to N-isopropyl-p-iodoamphetamine as the internal reference.
    Pardridge WM; Fierer G
    J Cereb Blood Flow Metab; 1985 Jun; 5(2):275-81. PubMed ID: 3988826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional studies of blood-brain barrier transport of glucose and leucine in awake and anesthetized rats.
    LaManna JC; Harik SI
    J Cereb Blood Flow Metab; 1986 Dec; 6(6):717-23. PubMed ID: 3793807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of [3H]methylglucose and [14C]iodoantipyrine to determine kinetic parameters of glucose transport in rat brain.
    Mori K; Maeda M
    Am J Physiol; 1997 Jan; 272(1 Pt 2):R163-71. PubMed ID: 9039005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous determination of regional cerebral blood flow and blood--brain glucose transport kinetics in the gerbil.
    Betz AL; Iannotti F
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):193-9. PubMed ID: 6841466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regionally selective inhibition of cerebral protein synthesis in the rat during hypoglycemia and recovery.
    Kiessling M; Xie Y; Kleihues P
    J Neurochem; 1984 Dec; 43(6):1507-14. PubMed ID: 6387053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-brain transport of thiamine monophosphate in the rat: a kinetic study in vivo.
    Patrini C; Reggiani C; Laforenza U; Rindi G
    J Neurochem; 1988 Jan; 50(1):90-3. PubMed ID: 3335853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local cerebral glucose consumption in the rat. I. Effects of halothane anesthesia.
    Savaki HE; Desban M; Glowinski J; Besson MJ
    J Comp Neurol; 1983 Jan; 213(1):36-45. PubMed ID: 6826787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-to-brain glucose transport, cerebral glucose metabolism, and cerebral blood flow are not increased after hypoglycemia.
    Segel SA; Fanelli CG; Dence CS; Markham J; Videen TO; Paramore DS; Powers WJ; Cryer PE
    Diabetes; 2001 Aug; 50(8):1911-7. PubMed ID: 11473055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state.
    Yoshino A; Hovda DA; Kawamata T; Katayama Y; Becker DP
    Brain Res; 1991 Oct; 561(1):106-19. PubMed ID: 1797338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia.
    Harik SI; LaManna JC
    J Neurochem; 1988 Dec; 51(6):1924-9. PubMed ID: 3183668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood-brain glucose transport in the conscious rat: comparison of the intravenous and intracarotid injection methods.
    Gjedde A; Rasmussen M
    J Neurochem; 1980 Dec; 35(6):1375-81. PubMed ID: 7441255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the kinetic behaviour of glucose based on simultaneous estimates of influx and phosphorylation in brain regions of rats in different physiological states.
    Cremer JE; Ray DE; Sarna GS; Cunningham VJ
    Brain Res; 1981 Sep; 221(2):331-42. PubMed ID: 6793210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic constants for blood-brain barrier amino acid transport in conscious rats.
    Miller LP; Pardridge WM; Braun LD; Oldendorf WH
    J Neurochem; 1985 Nov; 45(5):1427-32. PubMed ID: 4045456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of regional blood-brain barrier glucose transport and cerebral blood flow determined with the carotid injection technique in conscious rats.
    Braun LD; Miller LP; Pardridge WM; Oldendorf WH
    J Neurochem; 1985 Mar; 44(3):911-5. PubMed ID: 3973597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.